Nav: Home

Scientists to track the reaction of crystals to the electric field

November 06, 2018

The international scientific team, which included the researchers and alumni of Peter the Great St. Petersburg Polytechnic University (SPbPU) developed a new method for measuring the response of crystals on the electric field.

The results a collaborative research done at the European Synchrotron Radiation Facility (ESRF) were published in the Journal of Applied Crystallography and appeared on the cover of the October issue.

According to the international scientific group (the team that unites scientists from China, Israel, England, and Russia), this method will help to implement new and improve existing functional materials.

"The study is dedicated to crystalline materials (ferroelectric), which are used in a variety of devices from sonars for submarines to elements of ultrasonic diagnostic devices", said researcher of the Swiss-Norwegian Beam Lines at ESRF and the "Physical electronics" department of SPbPU Dmitry Chernyshov. He stressed that improving the properties of such materials is an extremely important scientific task.

The scientist said that detailed three-dimensional scattering maps were collected during the synchrotron experiments at the ESRF. These maps carry detailed information about the structure of the crystal and its response to the electric field. Next, a mathematical method was invented for extracting the relevant information from such maps. The crystals under study were placed in a special cell for the application of electric field, the cell was developed by the alumni of St. Petersburg Polytechnic University Tikhon Vergentiev as part of his PhD project during his internship at the ESRF.

As Dmitry Chernyshov explained that the structure of crystals can be described in different spatial scales. It is possible to describe the structure at the atomic level or at the level of large blocks of the atomic structure (domains, boundaries between domains, structural defects). When the external conditions change (temperature, pressure, etc.), all components of the structure react differently. The research team studied the response of the material to the electric field, which appears in its atomic and domain structures.

"In the framework of one experiment we were able to see how the different levels of the structural hierarchy react to external influences: if we measure and describe the response of individual components of a complex system, as well as their interaction, it is going to be possible to rationally control the structure and properties of such materials", mentioned Dmitry Chernyshov.

The authors of the study expect that the obtained results will be required by a wide range of specialists: it will help chemists to tune the chemical composition and crystal structure, and materials scientists will use new tools for manipulating the large blocks of structure, domains (domain engineering). According to scientists, this will lead to the improvement of the properties of materials used in ultrasonic diagnostic devices.
-end-


Peter the Great Saint-Petersburg Polytechnic University

Related Crystals Articles:

Raucous crystals
Some organic crystals jump around when heated up. This happens because of an extremely fast change in their crystal structure.
Volcanic crystals give a new view of magma
Volcanologists are gaining a new understanding of what's going on inside the magma reservoir that lies below an active volcano and they're finding a colder, more solid place than previously thought, according to new research published June 16 in the journal Science.
A network of crystals for long-distance quantum communication
Quantum physic can guarantee that a message has not be intercepted.
One-dimensional crystals for low-temperature thermoelectric cooling
Nagoya University researchers studied the thermal and electrical properties of one-dimensional crystals composed of tantalum, silicon and tellurium for thermoelectric cooling at temperatures below 250 K (-23°C).
For first time, researchers measure forces that align crystals and help them snap together
For the first time, researchers have measured the force that draws tiny crystals together and visualized how they swivel and align.
More Crystals News and Crystals Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...