Nav: Home

Novel tracer developed for precision targeting of non-small cell lung cancer

November 06, 2018

Researchers have developed a new nuclear medicine tracer that could improve diagnosis and treatment of non-small cell lung cancer. Research published in the November issue of The Journal of Nuclear Medicine found that the new tracer, 99mTc-HYNIC-cMBP, produced clearer images in less time than currently used tracers and was more rapidly eliminated from the body, reducing radiation exposure.

The c-Met receptor--a promising therapeutic target for this disease--is a tyrosine kinase receptor that promotes the growth of cancer cells, particularly in NSCLC. When c-Met receptors are elevated, cells may be resistant to EGFR-targeted therapy. However, with precise targeting of the c-Met receptor, physicians may be able to more effectively treat this disease.

In the study, the novel radiotracer was developed and cultured in two NSCLC cell lines, H1993 (high c-Met expression) and H1299 (no c-Met expression), and the activity and uptake of the 99mTc-HYNIC-cMBP tracer was assessed. These tumor cells were then transplanted into mice, and in vivo tumor specificity was measured by SPECT at various intervals after injection of the tracer. Blocking assays, biodistribution and autoradiography also were conducted to determine the tracer's specificity.

The authors found the preparation of the 99mTc-HYNIC-cMBP imaging agent to be simple, providing a high yield of the tracer with few associated costs. Biodistribution and autoradiography showed significantly higher accumulation of 99mTc-HYNICcMBP in H1993 tumors than in H1299 tumors. In addition, the H1993 tumors were clearly visualized after only a half hour in SPECT images, while the H1299 tumors were not observed at any time. The tracer was also cleared rapidly, which is favorable for reducing exposure to radiation, background noise and long delays between treatment and imaging readout.

"To the best of our knowledge, there are no other c-Met-targeted imaging studies in NSCLC using peptide-based radiotracer to date," noted Baozhong Shen, MD, PhD, professor of medical imaging and nuclear medicine and the first president of the Fourth Hospital of Harbin Medical University. "Our research results confirmed the feasibility of detecting c-Met expression in NSCLC with the novel SPECT tracer. Upon further optimization, the SPECT tracer may be translated into clinical use for screening and monitoring therapeutic response in NSCLC patients."
-end-
This study was made available online in May 2018 ahead of final publication in print in November 2018.

The authors of "Development of a SPECT Tracer to Image c-Met Expression in a Xenograft Model of Non-Small Harbin Medical University Cell Lung Cancer" include Zhaoguo Han, Yadi Xiao, Kai Wang, Ji Yan, Zunyu Xiao, Fang Fang, Zhongnan Jin, Yang Liu and Baozhong Shen, Molecular Imaging Research Center and TOF-PET/CT/MR Center, Fourth Hospital, Harbin Medical University, Harbin, Heilongjiang, China; and Xilin Sun, Molecular Imaging Research Center and TOF-PET/CT/MR Center, Fourth Hospital, Harbin Medical University, Harbin, Heilongjiang, China, and Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, California.

This work was supported partly by the National Natural Science Foundation of China (81471724, 81627901, 31210103913, 81101088, and 81130028), the National Basic Research Program of China (2015CB931800), the Heilongjiang Province Foundation for Returned Overseas Chinese Scholars, and the Key Laboratory of Molecular Imaging Foundation (College of Heilongjiang Province). No other potential conflict of interest relevant to this article was reported.

Please visit the SNMMI Media Center to view the PDF of the study, including images, and more information about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Rebecca Maxey at (703) 652-6772 or rmaxey@snmmi.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging, vital elements of precision medicine that allow diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes.

SNMMI's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings, and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

Society of Nuclear Medicine and Molecular Imaging

Related Radiation Articles:

A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.
Nimotuzumab-cisplatin-radiation versus cisplatin-radiation in HPV negative oropharyngeal cancer
Oncotarget Volume 11, Issue 4: In this study, locally advanced head and neck cancer patients undergoing definitive chemoradiation were randomly allocated to weekly cisplatin - radiation {CRT arm} or nimotuzumab -weekly cisplatin -radiation {NCRT arm}.
Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.
Radiation breaks connections in the brain
One of the potentially life-altering side effects that patients experience after cranial radiotherapy for brain cancer is cognitive impairment.
Fragmenting ions and radiation sensitizers
The anti-cancer drug 5-fluorouracil (5FU) acts as a radiosensitizer: it is rapidly taken up into the DNA of cancer cells, making the cells more sensitive to radiotherapy.
'Seeing the light' behind radiation therapy
Delivering just the right dose of radiation for cancer patients is a delicate balance in their treatment regime.
Radiation contamination at a crematorium
Radioactive compounds known as radiopharmaceuticals are used in nuclear medicine procedures to diagnose and treat disease.
First study of terahertz radiation in liquids
A research team from ITMO University and the University of Rochester (the USA) conducted a study on the formation of terahertz radiation in liquids.
A new way to create Saturn's radiation belts
A team of international scientists from BAS, University of Iowa and GFZ German Research Centre for Geosciences has discovered a new method to explain how radiation belts are formed around the planet Saturn.
A better device for measuring electromagnetic radiation
Researchers have developed a better bolometer, a device for measuring electromagnetic radiation.
More Radiation News and Radiation Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.