Nav: Home

Brown researchers develop new test to objectively measure pain, test medications

November 06, 2018

PROVIDENCE, R.I. [Brown University] -- If you've ever visited the emergency department with appendicitis, or you're one of the 100 million U.S. adults who suffer from chronic pain, you're familiar with a row of numbered faces, with expressions from smiling to grimacing, used to indicate pain levels.

Despite that tool's widespread use, some researchers say a more empirical approach would better serve both patients and the physicians who provide care.

"Sadly, this scale of smiley faces, called the visual analogue scale, is the gold-standard pain-assessment tool," said Carl Saab, an associate professor of neuroscience and neurosurgery (research) at Brown University and Rhode Island Hospital. "Our goal is to associate specific brain activity with various scores on the numerical scale to make pain assessment more objective. We want to help patients with chronic pain and their physicians get into agreement about pain level so it is better managed and diagnosed, which may reduce the over-prescription of opioids."

Saab and his colleagues have developed an electroencephalography-based test to objectively measure pain. Electroencephalography (EEG) is a method that measures brain activity using electrodes placed on the scalp. The brain activity is measured in the form of oscillations or "waves" of a certain frequency, somewhat like the specific frequency that dictates a radio station.

A frequency that correlates with pain in animals is called the "theta band," Saab said. Computational analysis of theta brain waves to determine their power can be used to objectively measure pain in rodents and humans in a non-invasive manner, he added.

In a Nov. 6 paper published in Scientific Reports, Saab's team reported that measuring the power of theta waves using EEG is an effective and direct test of pain and potential pain medication efficacy in pre-clinical animal models.

Testing new pain medications

The current method to measure pain, and the effectiveness of potential pain medications, in a pre-clinical animal model is to poke the animal's paw and see how quickly it moves its paw away. Slow paw withdrawal is linked to less pain and better pain medication. Faster paw withdrawal is linked to more pain and less effective pain medication.

"When I was a graduate student, I hated this test because it had nothing to do with clinical pain," said Saab, who is affiliated with Brown's Carney Institute for Brain Science. "Nobody pokes a patient with back pain. I'm just so happy that I beat this test, now we're working with something better."

Since the EEG-based test is a more direct measure of ongoing, spontaneous pain than the current approach, it could help researchers develop more effective medications for chronic back pain or sciatica, which don't have many effective treatments, Saab said.

In the paper, his team looked at three pain medications and compared their effectiveness in an animal model of sciatica. The researchers used the traditional behavior test, the EEG test and an analysis to determine blood concentration of the medications, which was compared with the clinical blood concentration of the medications in human patients.

The first medication they tested was a proven treatment for some forms of chronic pain, which is sold under the brand name Lyrica. The second was a promising pain medication in phase two clinical trials, and the third was a medication with inconclusive effectiveness in earlier studies.

Overall, the theta wave measurement and behavior test gave similar results, said Saab.

However, for a few of the experiments, such as a dose below the effective level of the first medication, the EEG test provided results that were more accurate -- more similar to the results found in patients than the behavior test -- said Saab. Specifically, the EEG test showed a decrease in theta power measurement at the clinical dose but not the low dose, while the behavior test showed slower paw withdrawal at the low dose and the clinical dose. By indicating pain relief at a dose lower than the effective dose, the behavior test gave a false positive.

"The ability to detect false positive or false negative outcomes is crucial to the drug development process," the authors wrote. Saab believes that the EEG test can aid researchers in identifying false positives in pre-clinical trials of new pain medications, improving the development process.

Future impact of pain test

The ultimate goal of the research is an objective tool to measure pain for clinics and emergency departments. Toward this end, Saab is working to translate his findings to patients by calibrating the EGG signatures of pain with the traditional smiley-face-based pain assessment tool.

In addition to aiding the development of more effective pain medications and improving the diagnosis and management of chronic pain, both of which address contributing factors to the opioid epidemic, an objective measure of pain could improve health disparities, Saab said. These range from women whose pain is dismissed by medical practitioners to patients with difficulty communicating, including young children.

Three years ago, Saab launched a start-up company to develop the next generation of pain sensors, which he hopes can become the new gold standard for pain measurement. Saab added there's considerable interest in a pain measurement tool for veterinary medicine.

Saab and Brown collaborators David Borton, an assistant professor of engineering, and Stephanie Jones, an associate professor of neuroscience, are working to understand the fundamental neuroscience of chronic pain and what kind of activity in the neurons produces the brain waves that constitute "signatures" of pain. In September, the team received a BRAIN grant from the National Institutes of Health to support this work.

Saab presented his findings on the EGG test to determine the effectiveness of new pain medications on Monday, Nov. 5, at the annual convention of the Society for Neuroscience in San Diego.
-end-
Other authors on the paper include Suguru Koyama, Brian LeBlanc, Kelsey Smith, Catherine Roach, Joshua Levitt and Muhammad Edhi at Brown and Rhode Island Hospital and Mai Michishita, Takayuki Komatsu, Okishi Mashita, Aki Tanikawa and Satoru Yoshikawa at Asahi KASEI Pharma Corporation.

Asahi KASEI and Boston Scientific supported this research through investigator-initiated grants.

Brown University

Related Chronic Pain Articles:

Breastfeeding may protect against chronic pain after Caesarean section
Breastfeeding after a Caesarean section (C-section) may help manage pain, with mothers who breastfed their babies for at least two months after the operation three times less likely to experience persistent pain compared to those who breastfed for less than two months, according to new research being presented at this year's Euroanaesthesia Congress in Geneva (June 3-5).
Unexpected mechanism behind chronic nerve pain
It has long been assumed that chronic nerve pain is caused by hypersensitivity in the neurons that transmit pain.
Chronic pain amplifies the brain's reaction to new injuries
Chronic pain in any one body part may distort the intensity with which a key brain region perceives pain everywhere else.
How doubts about getting better influence chronic pain treatment success
A leading psychology professor at The University of Texas at Arlington has focused international attention on how a chronic pain patient's irrational doubts about never getting better can influence both his reactions to pain and even treatment outcomes.
New study finds reading can help with chronic pain
A study conducted by researchers from the University of Liverpool, The Reader and the Royal Liverpool University Hospitals Trust, and funded by the British Academy, has found that shared reading (SR) can be a useful therapy for chronic pain sufferers.
Can staying active help to prevent chronic pain? Physical activity affects pain modulation in older adults
Older adults with higher levels of physical activity have pain modulation patterns that might help lower their risk of developing chronic pain, reports a study in PAINĀ®, the official publication of the International Association for the Study of Pain (IASP).
Poor and less educated suffer the most from chronic pain
Poorer and less-educated older Americans are more like to suffer from chronic pain than those with greater wealth and more education, but the disparity between the two groups is much greater than previously thought, climbing as high as 370 percent in some categories, according to new research by a University at Buffalo medical sociologist.
New study to investigate role of sleep in chronic pain
Washington State University will lead a study to understand the relationship between sleep and chronic pain, part of a nationwide effort to address the rising abuse of opioid pain relievers and expand the arsenal of non-drug treatment options.
UK study to help chronic pain sufferers back to work
Researchers from the University of Warwick's Medical School are leading a novel study to explore ways of helping people with chronic pain back to work.
Chronic pain linked to partners of people with depression
Partners of people with depression are more likely to suffer from chronic pain, research from the University of Edinburgh has found.

Related Chronic Pain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...