Nav: Home

Tracking down microRNA candidates that can contribute to disease

November 06, 2018

What started as Ninad Oak's side project turned out into something much larger, his doctorate thesis.

"The project started as my qualifying exam that I proposed at the end of my first year of graduate school," said Oak, a graduate student in molecular and human genetics in Dr. Sharon E. Plon's lab. "This was an off topic qualifying exam at the time, meaning the lab had not worked on this topic before."

One of the main interests of the Plon lab is cancer predisposition, in particular looking at protein coding regions of gene variants that may be responsible for susceptibility to childhood cancers.

"I started the project thinking that we had focused on protein coding regions for a long time. But they only represent 1 percent of the genome, so I thought that by looking at the remaining 99 percent we might find variations we have been missing that might explain some undiagnosed patient cases," Oak said.

In his qualifying exam, Oak proposed to look at variations on microRNA.

"Although the amount of microRNA that is found in the cell is often studied in human disease, microRNA variations that are associated with disease are understudied," Oak said.

MicroRNAs are small non-coding RNAs that are only about 18 to 25 nucleotides long; they are much smaller than genes that code for proteins, which are thousands of nucleotides long. MicroRNAs upregulate or downregulate the expression of more than 60 percent of genes by binding to matching sequences in other's genes' RNA. One microRNA might change the level of expression of up to 200 genes at a time, therefore affecting a number of different pathways.

Disturbing the normal function of microRNAs can lead to altered expression of their target genes, and this has been associated with a wide variety of human diseases, such as cancer, cardiovascular and developmental diseases.

"When he presented this proposal, I thought it was a good idea," said Plon, who is professor of pediatrics - oncology and molecular and human genetics at Baylor and director of the Cancer Genetics Clinical and Research Programs at Texas Children's Hospital.

ADmiRE helps prioritize microRNA variation linked to disease

Oak developed a novel computational tool called ADmiRE, which stands for Annotative Database for miRNA Elements. ADmiRE extensively annotates human microRNA variants to determine which ones are likely to contribute to or cause diseases.

"There were multiple challenges when I started working on this project," Oak said. "Most datasets of genomic sequencing are of whole exome sequencing (WES), which captures only protein coding regions. So first, I looked at how well WES datasets captured microRNAs and found that they captured about 50 percent."

The second challenge was to determine how well were microRNA mutations annotated by different annotation tools that already were available. These annotation tools allow researchers to add notes of explanation or comments that provide more information about each microRNA.

"There are various annotation tools that identify where a mutation is in general in the genome, not exclusively in microRNA. I found that these tools didn't annotate microRNA accurately; they tended to favor the potential change to a protein coding gene and not the impact on microRNAs. These tools also didn't include comprehensive information that would help us interpret and prioritize the potential role of that microRNA in disease," Oak said.

Oak worked on a microRNA annotation tool that would correctly annotate all microRNA variants and then used it to analyze one of the largest publicly available WES datasets of adults (gnomAD) to establish a baseline of microRNA variation in normal human populations.

"This approach allowed us to draw conclusions about how frequently microRNAs are variable in normal datasets," Oak said. "Knowing the background variation would help us identify potential microRNA variants in disease states."

To identify microRNAs that could be associated with disease, Oak developed a metric called allele frequency percentile score that shows how frequently a microRNA varies when compared to other microRNAs in these large datasets. He then selected a group of microRNAs that were in the lower quartile, essentially highlighting those with little variation. The reasoning is that microRNAs that are highly conserved in the adult population are so because otherwise disease may follow. Those highly conserved microRNAs would be candidates for being associated with disease.

The researchers then applied this new tool to analyze mutations across 10,000 cancer cases that included 32 cancer types in the Cancer Genome Atlas PanCancerAtlas WES dataset.

"We found miR-142 mutations linked to hematologic cancers, confirming the finding made a few years ago. Also, we found microRNA mutations in miR-21, which had not been previously associated with cancer. Our analysis with ADmiRE suggests that these mutations may contribute to mechanisms involved in esophageal cancer.

"At a personal level, I found this work very satisfying because I think it contributes a new technique to our lab that fills a gap in the field," Oak said. "From the scientific point of view, ADmiRE offers a new resource for researchers who have not found a genetic cause for a disease in protein coding genes. We have made this tool publicly available, and researchers can apply it to determine whether there is a signal in miRNA sequences. Maybe down the line this tool could be used by clinical laboratories."

"I think it is an important tool," Plon said. "Mutations in microRNA have been missed for many years, but I think ADmiRE will now allow labs that have mutation data to see if these mutations that we know are important play a role in the biology of human health."
-end-
Learn about all the details of this work in the journal Human Mutation.

Other contributors to this work include Rajarshi Ghosh, David A. Wheeler at Baylor College of Medicine and Li Ding and Kuan-lin Huang at Washington University in St. Louis.

Financial support was provided by the Cancer Prevention and Research Institute of Texas [RP10189], National Institutes of Health (NIH-R01-CA138836) and the National Human Genome Research Institute (5U01HG007436-03, U41HG009649-01). These latter two grants support efforts to develop the Clinical Genome Resource program (ClinGen).

Baylor College of Medicine

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...