Nav: Home

Long noncoding RNA identified as a key regulator of inflammation

November 06, 2018

Scientists have identified an RNA molecule with broad powers to regulate the body's inflammatory response to infection and injury. Called lincRNA-Cox2, it belongs to a recently discovered, highly abundant class of RNAs whose functions are only beginning to be understood.

The sequencing of the human genome revealed that only a small fraction of the DNA in our chromosomes comprises genes that encode instructions for making proteins. Those genes are transcribed into messenger RNA, which directs the synthesis of proteins that carry out various functions in the cell. The rest of the genome, about 98 percent of it, was sometimes referred to as the "dark matter" of the genome or dismissed as "junk DNA."

In the past decade, however, new RNA sequencing technologies have revealed that much of the genome is transcribed into noncoding RNA molecules of various types. Long intergenic noncoding RNA (lincRNA) is the largest class of these RNAs.

"We now know of about 16,000 long noncoding RNAs, about as many as there are protein-coding genes, but we know the functions of less than one percent of them," said Susan Carpenter, an assistant professor of molecular, cell and developmental biology at UC Santa Cruz.

Carpenter's lab is interested in how these lincRNAs control the processes involved in inflammation. The new study, published November 6 in Cell Reports, shows that lincRNA-Cox2 functions in several different ways to regulate the activity of genes involved in inflammation and other immune system responses.

Inflammation is a normal part of the body's response to infection and injury, but unresolved or chronic inflammation is associated with a wide range of diseases. LincRNA-Cox2 was named for its proximity in the genome to a gene called Cox2, which Carpenter calls "the most important inflammatory gene in the body." Aspirin, ibuprofen, and other nonsteroidal anti-inflammatory drugs (NSAIDs) reduce inflammation by inhibiting the Cox2 enzyme encoded by this gene.

One of the major findings of the new study is that lincRNA-Cox2 regulates the activity of this neighboring gene, boosting production of the enzyme. Carpenter's team found that levels of the Cox2 enzyme were 70 to 80 percent lower than normal in mice lacking the lincRNA-Cox2 gene.

But Cox2 is not the only gene regulated by lincRNA-Cox2. It also influences the expression of genes scattered all across the genome, and these other genes are important in the innate immune response to infections. LincRNA-Cox2 can inhibit some genes and enhance the expression of others. Previous work by Carpenter's lab and others had shown these effects in cell cultures, but the new study used genetically altered mice to tease out the effects of lincRNA-Cox2 on the neighboring Cox2 gene and on other immune system genes in live animals.

"We've now made animal models that show lincRNA-Cox2 is important in the whole organism, and this is probably one of the first examples to show a lincRNA controls not only a neighboring gene but other genes as well," Carpenter said.

One of the functions of lincRNA-Cox2 is to inhibit the expression of a number of genes that are important in the innate immune response to viral infections. "You want those genes to turn on when you have an infection, but when they get turned on in the absence of infection it's associated with autoimmune diseases like lupus," Carpenter said.

Carpenter's team also used the mouse models to investigate the expression of lincRNA-Cox2 in different tissues. They found, for example, that it is highly active in lung tissue, which suggests it may play a role in respiratory infections. In future work, the researchers plan to take a closer look at the activity of lincRNA-Cox2 in specific cell types.

"This field is so new, and there was a lot of skepticism at first, but we're now seeing that these lincRNAs are extremely important," Carpenter said. "It takes less energy for the cell to make an RNA that it does to make a protein, so it makes sense that a lot of regulatory molecules are RNAs."

Medical researchers are eager to understand the functions of these noncoding RNA molecules. With the explosive growth of genome sequencing, biomedical scientists have performed many genome-wide association studies (GWAS) to identify genetic variants associated with diseases. But most of the disease-associated genetic variants found in these studies are not located in protein-coding genes.

"It turns out that 97 percent of them are in noncoding regions of the genome," Carpenter said. "That's one reason there is so much interest in these noncoding RNA genes."

In addition to Carpenter, the coauthors of the paper include first authors Roland Elling at the University of Massachusetts Medical School, Worcester, and Elektra Robinson at UC Santa Cruz, as well as researchers at Harvard University, University of Pennsylvania, UC San Francisco, and University of Colorado, Boulder. This work was funded by the National Institutes of Health.

University of California - Santa Cruz

Related Genome Articles:

A close look into the barley genome
An international consortium, with the participation of the Helmholtz Zentrum München, Plant Genome and Systems Biology Department (PGSB), has published methodologically significant data on the barley genome.
Barley genome sequenced
Looking for a better beer or single malt Scotch whiskey?
From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis
Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant.
A three-dimensional map of the genome
Cells face a daunting task. They have to neatly pack a several meter-long thread of genetic material into a nucleus that measures only five micrometers across.
Rhino genome results
A study by San Diego Zoo Global reveals that the prospects for recovery of the critically endangered northern white rhinoceros -- of which only three individuals remain -- will reside with the genetic resources that have been banked at San Diego Zoo Global's Frozen Zoo®.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Genome: It's all about architecture
How do pathogens such as bacteria or parasites manage to hide from their host's immune system?
Accelerating genome analysis
An international team of scientists, led by researchers from A*STAR's Genome Institute of Singapore and the Bioinformatics Institute, have developed SIFT 4G (SIFT for Genomes) -- a software that can lead to faster genome analysis.
Packaging and unpacking of the genome
Single-cell techniques have been used to investigate histone replacement and chromatin remodeling in developing oocytes.
The astounding genome of the dinoflagellate
Dinoflagellates live free-floating in the ocean or symbiotically with corals, serving up -- or as -- lunch to a host of mollusks, tiny fish and coral species.

Related Genome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...