Nav: Home

Drug pollution concentrates in stream bugs, passes to predators in water and on land

November 06, 2018

(Millbrook, NY) Sixty-nine pharmaceutical compounds have been detected in stream insects, some at concentrations that may threaten animals that feed on them, such as trout and platypus. When these insects emerge as flying adults, they can pass drugs to spiders, birds, bats, and other streamside foragers. These findings by an international team of researchers were published today in Nature Communications.

Pharmaceutical pollution is present in surface waters globally. Drugs enter the environment because most wastewater treatment facilities are not equipped to remove them from sewage. Septic tanks, aging pipes, and sewer overflows contribute to the problem.

Emma Rosi, an aquatic ecologist at Cary Institute of Ecosystem Studies and a coauthor on the paper, explains, "Stream life is swimming in a mixture of pharmaceuticals. Our study is the first to show that this chronic drug pollution can concentrate in aquatic insects and move up food webs, in some cases exposing top predators to therapeutically-relevant doses."

Surveying pharmaceuticals in streams

The team sampled six streams in Melbourne, Australia for 98 pharmaceutical compounds - the most exhaustive screening to date. Pharmaceuticals measured included common drugs like antibiotics, antidepressants, antihistamines, and NSAIDs. Study sites were selected along a gradient of wastewater contamination that included a site downstream of a wastewater treatment plant and a site in a national park.

Aquatic insects and riparian spiders were collected. Erinn Richmond, a freshwater ecologist at Monash University in Australia and lead author on the study, explains, "We focused on riparian spiders because they build their webs over streams and feed on adult aquatic insects as they emerge from the water."

Bugs on drugs

Tissue analyses detected up to 69 different pharmaceutical compounds in aquatic insects and up to 66 compounds in riparian spiders. Drug concentrations were the highest in invertebrates collected downstream of wastewater treatment facilities or in heavily populated areas with potential septic tank leakage. On average, pharmaceutical concentrations at these sites were 10 to 100 times higher than less contaminated sites.

Coauthor Jerker Fick, a chemist at Umeå University in Sweden, analyzed the insect and spider samples. "Insect tissues had drug concentrations that were orders of magnitude higher than concentrations measured in surface waters. We also found a diverse suite of drugs in spiders, indicating that drugs are passed from the water to prey to predator, thereby exposing other animals in the food web to drugs."

"Pharmaceuticals were present in every insect and spider we tested - including those collected in Dandenong Ranges National Park," Richmond notes. "Even this seemingly pristine site was contaminated, likely because people live in the park's drainage area and visit the park."

Top predators are at risk

In the streams studied, platypus and brown trout also feed on aquatic insects. By pairing concentrations of pharmaceuticals found in stream insects with known dietary needs of platypus and trout, the team was able to estimate their drug exposure.

Rosi explains, "A platypus living in a creek receiving treated wastewater effluent could receive the equivalent of half of a recommended human dose of antidepressants every day - just by eating its normal diet of stream insects. This intake is likely to have biological effects."

Next steps

The caddisfly, a globally common aquatic insect, was among those tested in this study. Richmond says, "Similar insects are found in freshwaters all over the world. This isn't a problem specific to Australia; it's representative of what's likely happening wherever people take drugs. And it's likely an underestimate. We only tested for 98 pharmaceutical compounds - there are thousands in circulation."

Rosi concludes, "Pharmaceutical use is increasing worldwide. It's clear that the drugs we take are entering freshwaters and being passed up the food web. We don't know the ecological consequences of exposure to this pollution. What does it mean to be a platypus or trout with more than 60 drugs in your tissues? Are there synergistic effects? More research is needed on the extent of food web contamination and the effects of these compounds on fish and wildlife."
-end-
Investigators:

Erinn K. Richmond - Water Studies Centre, School of Chemistry, Monash University, Australia

Emma J. Rosi - Cary Institute of Ecosystem Studies, New York

David. M. Walters - U.S. Geological Survey, Columbia Environmental Research Center, Missouri

Jerker Fick - Umeå University, Sweden

Stephen K. Hamilton - Kellogg Biological Station, Michigan State University, and Cary Institute of Ecosystem Studies, New York

Tomas Brodin - Umeå University, Sweden

Anna Sundelin - Umeå University, Sweden

Michael R. Grace - Water Studies Centre, School of Chemistry, Monash University, Australia

Funding for this project was provided by an Australia Research Council Linkage Grant obtained by Grace and Rosi; additional funding was provided to Richmond through a Society of Freshwater Science Fellows endowment award and a scholarship from the Millbrook Garden Club.

Cary Institute of Ecosystem Studies is an independent nonprofit center for environmental research. Since 1983, our scientists have been investigating the complex interactions that govern the natural world and the impacts of climate change on these systems. Our findings lead to more effective management and policy actions and increased environmental literacy. Staff are global experts in the ecology of: cities, disease, forests, and freshwater.

Cary Institute of Ecosystem Studies

Related Pollution Articles:

Combatting air pollution with nature
Air pollution is composed of particles and gases that can have negative impacts on both the environment and human health.
Nature might be better than tech at reducing air pollution
Adding plants and trees to the landscapes near factories and other pollution sources could reduce air pollution by an average of 27 percent, new research suggests.
Aspirin may prevent air pollution harms
A new study is the first to report evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) like aspirin may lessen the adverse effects of air pollution exposure on lung function.
Is pollution linked to psychiatric disorders?
Researchers are increasingly studying the effects of environmental insults on psychiatric and neurological conditions, motivated by emerging evidence from environmental events like the record-breaking smog that choked New Delhi two years ago.
New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.
A new view of wintertime air pollution
The team's unexpected finding suggests that in the US West and elsewhere, certain efforts to reduce harmful wintertime air pollution could backfire.
Tracking the sources of plastic pollution
Plastic pollution in the world's oceans is now widely recognized as a major global challenge -- but we still know very little about how these plastics are actually reaching the sea.
Delhi's complicated air pollution problem
According to the World Health Organization, Delhi is the world's most polluted large city.
A warming world increases air pollution
The UC Riverside-led study shows that the contrast in warming between the continents and sea, called the land-sea warming contrast, drives an increased concentration of aerosols in the atmosphere that cause air pollution.
China's war on particulate air pollution is causing more severe ozone pollution
In China, the rapid reduction of the pollutant PM 2.5 dramatically altered the chemistry of the atmosphere, leading to an increase in harmful ground-level ozone pollution, especially in large cities.
More Pollution News and Pollution Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

Breaking Bongo
Deep fake videos have the potential to make it impossible to sort fact from fiction. And some have argued that this blackhole of doubt will eventually send truth itself into a death spiral. But a series of recent events in the small African nation of Gabon suggest it's already happening.  Today, we follow a ragtag group of freedom fighters as they troll Gabon's president - Ali Bongo - from afar. Using tweets, videos and the uncertainty they can carry, these insurgents test the limits of using truth to create political change and, confusingly, force us to ask: Can fake news be used for good? This episode was reported and produced by Simon Adler. Support Radiolab today at Radiolab.org/donate.