Nav: Home

Bioreactor device helps frogs regenerate their legs

November 06, 2018

A team of scientists designed a device that can induce partial hindlimb regeneration in adult aquatic African clawed frogs (Xenopus laevis) by "kick-starting" tissue repair at the amputation site. Their findings, appearing November 6 in the journal Cell Reports, introduce a new model for testing "electroceuticals," or cell-stimulating therapies.

"At best, adult frogs normally grow back only a featureless, thin, cartilaginous spike," says senior author Michael Levin (@drmichaellevin), developmental biologist at the Allen Discovery Center at Tufts University. "Our procedure induced a regenerative response they normally never have, which resulted in bigger, more structured appendages. The bioreactor device triggered very complex downstream outcomes that bioengineers cannot yet micromanage directly."

The scientists 3D printed the bioreactor out of silicon and filled it with hydrogel--a sticky glob of polymers. They laced the hydrogel with hydrating silk proteins that promote healing and regeneration, then added progesterone. Progesterone is best known for its role in preparing the uterus for pregnancy, but the hormone has also been shown to promote nerve, blood vessel, and bone tissue repair.

The researchers split the frogs into three groups: experimental, control, and sham. For the experimental and sham group, they sutured the device on the frogs immediately after limb amputation. In the experimental group, the bioreactor released progesterone onto the amputation site. In all cases, they removed the devices after 24 hours.

When they looked at the experimental group frogs at different time points over 9.5 months, they noticed that the bioreactor seemed to trigger a degree of limb regeneration not observed in the other groups. Instead of a typical spike-like structure, the bioreactor treatment resulted in a paddle-like formation closer to a fully formed limb than unaided regeneration could create.

"The bioreactor device created a supportive environment for the wound where the tissue could grow as it did during embryogenesis," says Levin. "A very brief application of bioreactor and its payload triggered months of tissue growth and patterning."

Levin and his team took a closer look at the regenerated structures using molecular and histology analyses. They saw that, unlike in the control and sham groups, the regenerating limbs of the bioreactor-treated frogs were thicker with more developed bones, innervation, and vascularization. Analyzing video footage of the frogs in their tanks, they also noticed that the frogs could swim more like unamputated frogs.

RNA sequencing and transcriptome analysis revealed that the bioreactor had altered the gene expression occurring in cells at the amputation site. Genes involved in oxidative stress, serotonergic signalling, and white blood cell activity were upregulated, while some other signaling-related genes were downregulated.

The researchers also observed that scarring and immune responses were downregulated in the bioreactor-treated frogs, suggesting that the added progesterone dampened the body's natural reaction to injury in a way that benefited the regeneration process.

"In both reproduction and its newly discovered role in brain functioning, progesterone's actions are local or tissue-specific," says first author Celia Herrera-Rincon, neuroscientist in Levin's lab at Tufts University. "What we are demonstrating with this approach is that maybe reproduction, brain processing, and regeneration are closer than we think. Maybe they share pathways and elements of a common--and so far, not completely understood--bioelectrical code."

Levin's lab will continue to target bioelectric processes for inducing spinal cord regeneration and tumor reprogramming. They also hope to replicate their bioreactor experiment in mammals. Previous research suggests that mice can partially regenerate amputated fingertips in the right conditions, but their life on land hinders this process.

"Almost all good regenerators are aquatic," says Levin. "You can imagine why this matters: a mouse that loses a finger or hand, and then grinds the delicate regenerative cells into the flooring material as it walks around, is unlikely to experience significant limb regeneration."

Levin plans to next add sensors to the device for remote monitoring and optogenetic stimulation, which he hopes will improve control over cellular decision making after injury.
-end-
This research was funded by the Paul G. Allen Frontiers Group, the NIH, and the W. M. Keck Foundation.

Cell Reports, Herrera-Rincon et al.: "Brief Local Application of Progesterone via a Wearable Bioreactor Induces Long-Term Regenerative Response in Adult Xenopus Hindlimb" https://www.cell.com/cell-reports/fulltext/S2211-1247(18)31573-0

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. Visit: http://www.cell.com/cell-reports. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Progesterone Articles:

Progesterone and bisexuality: Is there a link?
Bisexuality is quite common among men and women whose mothers received additional doses of the sex hormone progesterone while pregnant.
New natural estrogen-progesterone capsule reduces postmenopausal hot flashes
A natural, or bioidentical, combined estradiol-progesterone capsule (TX-001HR) significantly decreases the frequency and severity of moderate to severe hot flashes in postmenopausal women, the Replenish study finds.
Vaginal progesterone may reduce newborn complications in some pregnancies
Treatment with vaginal progesterone may help reduce certain risks that can occur when mothers are pregnant with twins and have a short cervix, which is a risk factor for preterm birth.
Vaginal progesterone reduces the rate of preterm birth
Treatment with vaginal progesterone reduced the risk of preterm birth, neonatal complications and death in pregnant women with twins and who have a short cervix -- a risk factor for preterm birth -- according to a meta-analysis of individual patient data by researchers at the National Institutes of Health, the Wayne State University School of Medicine, the Detroit Medical Center, and other institutions in the United States and abroad.
Progesterone may be key to preventing recurrent miscarriage
For women who suffer multiple pregnancy losses in the first four to six weeks of gestation, the hormone progesterone could offer hope for a successful birth, according to a new study by Yale School of Medicine researchers and their colleagues at University of Illinois at Chicago.
Pre-pregnancy progesterone helps women with recurrent pregnancy loss
Women who have had two or more unexplained miscarriages can benefit from natural progesterone treatment before pregnancy, a new a study from the University of Illinois at Chicago shows.
Progesterone promotes healing in the lung after a bout of flu
Over 100 million women are on hormonal contraceptives. All of them contain some form of progesterone, either alone or in combination with estrogen.
Progesterone in botanicals could aid women's health
The University of Illinois at Chicago has received a five-year, $1.225 million federal grant to discover progesterone-like compounds from commonly consumed botanicals and learn how the hormones can aid women's health.
Cross talk between hormone receptors has unexpected effects
Although the estrogen receptor is considered dominant in breast cancer, the progesterone receptor assumes control when both receptors are present and exposed to estrogens and progestins.
Researchers identify molecule needed for sperm activation
Researchers funded by the National Institutes of Health have discovered the cellular switch that boosts the activity of sperm cells so that they can travel to the egg.

Related Progesterone Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...