Nav: Home

How melanoma evades targeted therapies

November 06, 2018

(PHILADELPHIA) - Melanoma is the leading cause of death from skin cancer. Many patients develop metastatic disease that spreads to other parts of the body. One commonly used targeted therapy for metastatic melanomas works by attacking melanomas with mutations in the BRAF gene that make them susceptible to RAF-inhibiting drugs. However, many cancers quickly become resistant to the treatment. Now researchers at the NCI-designated Sidney Kimmel Cancer Center - Jefferson Health have discovered how one of the mechanisms of that resistance works, a finding that could lead to designing more effective combination therapies.

"The findings give us new clues about how we might combat resistance to this targeted melanoma therapy," said Andrew Aplin, PhD, Associate Director for Basic Research and the Program Leader for Cancer Cell Biology and Signaling (CCBS) at the Sidney Kimmel Cancer Center. The research was published November 6th in Cell Reports.

About 13-30 percent of melanomas become resistant to RAF-inhibiting drugs because of a difference in how those cells produce and process the BRAF protein. The gene these patients carry is called a BRAF V600E isoform. These RAF-resistant isoform cancers produce BRAF proteins that become active complexes with another cancer-promoting protein called MEK.

Dr. Aplin, together with first author Michael Vido, an MD/PHD student in Dr. Aplin's lab and colleagues, showed that when they blocked this complex, or dimerization, by targeting a specific site on the BRAF isoform, they could block MEK binding and restore the potency of the RAF-inhibitor.

"The work helps explain dual hypotheses for RAF-inhibitor resistance, one which focused on MEK and the other on dimerization," said Dr. Aplin. "This work weaves the two together mechanistically. The results may also help guide the design of better combination therapies for melanoma."

"This pivotal study is part of a much larger effort within the Sidney Kimmel Cancer Center at Jefferson to advance the pace of discoveries leading to clinical translation," said Karen Knudsen, PhD, Enterprise Director of the Sidney Kimmel Cancer Center. "Dr. Aplin's findings bring critical insight into the molecular underpinnings of therapeutic resistance, and nominate new possibilities for treating advanced disease."
-end-
This work was funded by grants from the NIH with the following grant numbers: F30-CA203314, K99-CA207855, and R01-CA182635. Support was also provided by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation. Core facilities and resources were funded through the Sidney Kimmel Cancer Center NCI Support Grant, P30-CA56036. The authors report no conflicts of interest relevant to this work.

Article reference: Michael J. Vido, Kaitlyn Le, Edward J. Hartsough, and Andrew E. Aplin, "BRAF splice variant resistance to RAF inhibitor requires enhanced MEK association," Cell Reports,https://www.cell.com/cell-reports/fulltext/S2211-1247(18)31638-3 DOI: 10.1016/j.celrep.2018.10.049, 2018.

Media Contact: Edyta Zielinska, edyta.zielinska@jefferson.edu, 215-955-7359.

Thomas Jefferson University

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...