Nav: Home

Brain-computer interface advances improve prosthetics, therapies

November 06, 2018

SAN DIEGO -- Advances in connecting neural stimulation to physical control of the body are transforming the development of prosthetics and therapeutic training for people with disabilities, according to new research. The findings were presented at Neuroscience 2018, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news about brain science and health.

As improved understanding of neural functions and interactions combines with technical advances, scientists are developing new and improved prosthetics and therapies aimed at improving quality of life for people with conditions such as paralysis, stroke, and blindness. Electrical signals that stimulate specific regions in the brain or body can bypass injuries in the spinal column or eyes and activate target regions, training the brain to process movement or vision in the most effective manner possible.

Today's new findings show that:
  • Advances in the precision and force of brain-controlled, computer-guided hand movements may enable people with quadriplegia and others suffering from hand paralysis to begin integrating electrical-stimulation-based prosthetics into their daily lives (Gaurav Sharma, abstract 271.01).
  • Using avatars to provide stroke patients with visual feedback in combination with real-time electronic feedback improved the use of motor function even years after a stroke (Christoph Guger, abstract 271.14).
  • A new prosthetic hand system is the first prosthesis designed for regular home use to restore task-related sensations to an amputee (Ranu Jung, abstract 404.10, see attached summary).
  • A new brain stimulation technique called "dynamic current steering" helps restore limited vision to blind people (Michael Beauchamp, abstract 226.09).
  • An assistive device that combines computer vision and sound cues can help blind people perform everyday tasks such as identifying and locating people and objects around them (Michael Paradiso, abstract 226.04).
"The advances presented today help expand what's possible with brain-machine interfaces," said press conference moderator Chethan Pandarinath, PhD, of Emory University, whose work interprets how the brain represents information and intention to build assistive devices for people with disabilities. "The neuroscience advances and range of techniques presented provide potential new assistive devices and treatment strategies for people with disabilities, and also open the door to a deeper understanding of how our brains translate intention into actions."
-end-
This research was supported by national funding agencies worldwide, including the National Institutes of Health, the Defense Advanced Research Projects Agency/Army Research Office, and the European Union's Horizon 2020, as well as other public and private institutions. Find out more about brain-computer interfaces on BrainFacts.org.

Related Neuroscience 2018 Presentation Minisymposia: Latent Factors and Dynamics in Motor Cortex and Their Application to Brain-Machine Interfaces Saturday, Nov. 3, 1:30-4 p.m., SDCC 28A

Society for Neuroscience

Related Stroke Articles:

Retraining the brain to see after stroke
A new study out today in Neurology, provides the first evidence that rigorous visual training restores rudimentary sight in patients who went partially blind after suffering a stroke, while patients who did not train continued to get progressively worse.
Catheter ablations reduce risks of stroke in heart patients with stroke history, study finds
Atrial fibrillation patients with a prior history of stroke who undergo catheter ablation to treat the abnormal heart rhythm lower their long-term risk of a recurrent stroke by 50 percent, according to new research from the Intermountain Medical Center Heart Institute.
Imaging stroke risk in 4-D
A new MRI technique developed at Northwestern University detects blood flow velocity to identify who is most at risk for stroke, so they can be treated accordingly.
Biomarkers may help better predict who will have a stroke
People with high levels of four biomarkers in the blood may be more likely to develop a stroke than people with low levels of the biomarkers, according to a study published in the Aug.
Pre-stroke risk factors influence long-term future stroke, dementia risk
If you had heart disease risk factors, such as high blood pressure, before your first stoke, your risk of suffering subsequent strokes and dementia long after your initial stroke may be higher.
More Stroke News and Stroke Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.