Nav: Home

White line of algae deaths marks uplift in 2016 Chilean earthquake

November 06, 2018

A bleached fringe of dead marine algae, strung along the coastlines of two islands off the coast of Chile, offers a unique glimpse at how the land rose during the 2016 magnitude 7.6 Chiloé earthquake, according to a new study in the Bulletin of the Seismological Society of America.

Durham University researcher Ed Garrett and colleagues used the algal data to help confirm the amount of fault slip that occurred during the Chiloé quake, which took place in an area that had been seismically quiet since the 1960 magnitude 9.5 Valdivia earthquake--the largest instrumentally recorded earthquake in the world.

There are fewer records of more moderate earthquakes in the region, so "precisely quantifying the amount and distribution of slip in 2016 therefore helps us to understand the characteristics of these smaller events. This information helps us to better assess how faults accumulate and release strain during sequences of ruptures of different magnitudes," said Garrett.

"Such insights in turn assist with efforts to assess future seismic hazards," he added. "While the 2016 earthquake occurred in a sparsely populated region, similar major earthquakes on the Chilean Subduction Zone could pose significant hazards to more populous regions in the future."

Garrett and colleagues combined their calculations of the amount of uplift indicated by the algal data--about 25.8 centimeters--with satellite data of the crust's movement during the earthquake to determine that the maximum slip along the fault was approximately three meters.

The slip is equivalent to about 80 percent of the maximum cumulative plate convergence since the 1960 Valdivia earthquake, they conclude, which is a result similar to other recent estimates of slip. Some of the earliest reports from the 2016 earthquake suggested that the maximum fault slip during the event was as much as five meters, which would have wiped out or exceeded all the seismic stress built up by plate convergence since the 1960 earthquake.

When an earthquake rupture lifts coastal crust, it can strand organisms like algae and mussels that fix themselves to rocks, raising their homes above their normal waterline. The catastrophe leaves a distinctive line of dead organisms traced across the rock. The distance between the upper limit of this death zone and the upper limit of the zone containing living organisms offers an estimate of the vertical uplift of the crust.

Researchers have long used the technique to measure abrupt vertical deformation of the crust. During the famous 19th century voyage of the HMS Beagle, Charles Darwin used a band of dead mussels to determine the uplift of Isla Santa María during the magnitude 8.5 Chilean earthquake of 1835.

Ten months after the Chiloé earthquake, Garrett and his colleagues were studying the effects of the quake on coastal environments such as tidal marshes, looking for modern examples of how earthquakes affect these environments that they could use in their study of prehistoric earthquakes.

"It was only once we reached Isla Quilán that we noticed the band of bleached coralline algae along the rocky shorelines and realized that we could use this marker to quantify the amount of uplift," Garrett said.

The research team made hundreds of measurements of the bleached algae line where it appeared on Isla Quilán and Isla de Chiloé. The rich algal record was helpful in corroborating the amount of vertical uplift in a region of the world sparsely covered by instruments that measure crustal deformation. The study demonstrates that land-level changes as low as 25 centimeters can be determined using large numbers of "death-zone" measurements at sites that are sheltered from waves, the researchers note.
The study was supported by the Natural Environment Research Council, the European Union/Durham University (COFUND) under the DIFeREns2 project and CYCLO, a Nucleus of the Millennium Scientific Initiative (ICM) of the Chilean Government.

Seismological Society of America

Related Earthquake Articles:

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.
Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.
Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.
How fluid viscosity affects earthquake intensity
A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the intensity of earthquakes.
Earthquake in super slo-mo
A big earthquake occurred south of Istanbul in the summer of 2016, but it was so slow that nobody noticed.
A milestone for forecasting earthquake hazards
In a new study in Science Advances, researchers report that their physics-based model of California earthquake hazards replicated estimates from the state's leading statistical model.
Mw 5.4 Pohang earthquake tied to geothermal activity?
The Mw 5.4 Pohang earthquake that occurred near a geothermal site in South Korea last year was likely triggered by fluid injection at the geothermal plant, two separate reports conclude.
Seismologists introduce new measure of earthquake ruptures
A team of seismologists has developed a new measurement of seismic energy release that can be applied to large earthquakes.
Residual strain despite mega earthquake
On Christmas Day 2016, the earth trembled in southern Chile.
The losses that come after the earthquake: Devastating and costly
The study, titled, 'Losses Associated with Secondary Effects in Earthquakes,' published by Frontiers in Built Environmen, looks at the devastation resulting from secondary disasters, such as tsunamis, liquefaction of sediments, fires, landslides, and flooding that occurred during 100 key earthquakes that occurred from 1900 to the present.
More Earthquake News and Earthquake Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at