Nav: Home

Experimental plasma generator offers path forward for better use of landfill gas as energy

November 06, 2018

WASHINGTON, D.C., NOVEMBER 6, 2018 -- Methane gas released from landfills has long been a topic of interest for alternative energy. One issue, however, is that landfill gases contain numerous contaminants, such as volatile methyl siloxanes, whose silica deposits put extra wear and tear on the natural gas generators when they combust. One group has demonstrated a promising new application of plasma technology capable of removing such compounds.

Researchers at the University of South Carolina in Columbia have demonstrated an experimental plasma device capable of cleaning gas samples of D4, one of the most common siloxanes. Drawing on a technique for creating plasma called dielectric barrier discharge, the group was able to significantly reduce the amount of D4 samples after treating it with a helium-based plasma.

The findings point to a new potential solution for accommodating landfill gas rich in siloxanes. They will be presented at the American Physical Society 71st Annual Gaseous Electronics Conference and 60th Annual meeting of the APS Division of Plasma Physics, which takes place Nov. 5-9 at the Oregon Convention Center in Portland.

"This is the first time dielectric barrier discharge has been used to remove volatile organic silicate compounds," said Malik Tahiyat, one of the researchers involved with the study. "In our case, there's no wait for removing it or material that has to be thrown out after a certain amount of time."

Silicates erode the engines that drive natural gas electricity production, requiring extra costly maintenance. Most current methods of removing them from cleaner burning methane, such as carbon filters and silica gel, suffer from diminished performance and can be costly to reuse.

The group created a dielectric barrier discharge plasma to render D4 inert by polymerizing it out of the gas phase. Helium gas was bubbled through liquid siloxane, which is then passed through a tubular dielectric barrier discharge plasma reactor.

Samples that were treated with electric discharges were compared to samples that were not. Gas chromatography-mass spectrometry and nuclear magnetic resonance techniques were used to evaluate the quantity and identity of the products from the plasma reactions.

Depending on how long the helium with D4 was exposed to the plasma, up to 85 percent of the D4 was converted to removable deposits of silica compounds, confirming that the silicon was removed from the gas mixture.

"Our findings have shown that plasma can remove siloxane successfully," said Shamia Hoque, another researcher involved with the study. "When it is removed, it comes out in a form that wouldn't re-enter the waste supply, something that's a problem with the other approaches."

Tanvir Farouk, a third researcher involved with the study, said the group hopes to improve on the laboratory-based system with the hopes of one day scaling it up to a commercially viable product.
-end-
Presentation #ET4.9, "Removal of siloxanes from landfill gases with the application of dielectric barrier discharge plasma," by Malik Tahiyat, Nouf Abbas, Tanvir Farouk and Shamia Hoque will be Tuesday, Nov. 6, 11:45 a.m. in Oregon Convention Center Room: A107-A109. Abstract: http://meetings.aps.org/Meeting/GEC18/Session/ET4.9

USEFUL LINKS

Main meeting website: http://www.apsgec.org/gec2018/

Meeting abstracts: http://meetings.aps.org/Meeting/GEC18/APS_epitome

Hotel information: http://www.apsgec.org/gec2018/housing.php

PRESS REGISTRATION

We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact Rhys Leahy or the AIP Media Line (media@aip.org, 301-209-3090). We can also help with setting up interviews and obtaining images, sound clips, or background information.

ABOUT GEC

GEC is a special meeting of the Division of Atomic, Molecular and Optical Physics (DAMOP) of the American Physical Society. GEC promotes invaluable exchange of scientific information, viewpoints, and approaches (experimental, theoretical, modeling, and numerical simulation) to understanding the physical and chemical processes occurring in partially ionized, collisional plasmas and between the atoms, molecules, charged particles, photons, waves, and fields. More: http://www.apsgec.org/gec2018/index.php

ABOUT DAMOP

The Division of Atomic, Molecular and Optical Physics (DAMOP) was founded in 1943, and it was the first division of the American Physical Society. Its central focus is fundamental research on atoms, simple molecules, electrons and light, and their interactions. More: https://www.aps.org/units/damop/index.cfm

ABOUT APS

The American Physical Society (APS) is a nonprofit membership organization working to advance the knowledge of physics. More: https://www.aps.org

American Physical Society

Related Plasma Articles:

Table top plasma gets wind of solar turbulence
Scientists from India and Portugal recreate solar turbulence on a table top using a high intensity ultrashort laser pulse to excite a hot, dense plasma and followed the evolution of the giant magnetic field generated by the plasma dynamics.
Getting the biggest bang out of plasma jets
Capillary discharge plasma jets are created by a large current that passes through a low-density gas in what is called a capillary chamber.
Neptune: Neutralizer-free plasma propulsion
Plasma propulsion concepts are gridded-ion thrusters that accelerate and emit more positively charged particles than negatively charged ones.
UCLA researchers discover a new cause of high plasma triglycerides
People with hypertriglyceridemia often are told to change their diet and lose weight.
Where does laser energy go after being fired into plasma?
An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde.
New feedback system could allow greater control over fusion plasma
A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.
PPPL scientist uncovers physics behind plasma-etching process
PPPL physicist Igor Kaganovich and collaborators have uncovered some of the physics that make possible the etching of silicon computer chips, which power cell phones, computers, and a huge range of electronic devices.
Calculating 1 billion plasma particles in a supercomputer
At the National Institutes of Natural Sciences National Institute for Fusion Science (NIFS) a research group using the NIFS 'Plasma Simulator' supercomputer succeeded for the first time in the world in calculating the movements of one billion plasma particles and the electrical field constructed by those particles.
Anti-tumor effect of novel plasma medicine caused by lactate
Nagoya University researchers developed a new physical plasma-activated salt solution for use as chemotherapy.
Clarifying the plasma oscillation by high-energy particles
The National Institute for Fusion Science has developed a new code that can simulate the movement of plasma and, simultaneously, the movement of particles circulating at high speeds.

Related Plasma Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...