Nav: Home

Flow units: Dynamic defects in metallic glasses

November 06, 2018

In a crystal, structural defects such as dislocations or twins are well defined and largely determine the mechanical and other properties. These defects can be easily identified as the broken long-range atomic order. However, the lack of a periodic microstructure makes the searching of similar structural defects a difficult task in amorphous materials. Recent studies found that amorphous materials are intrinsically spatially and temporally heterogeneous, which implies the possibility to identify the dynamic defect in a glass. Metallic glass (MG) with many unique properties is considered as a good model material for its relative simple structure. In the last few years, flow units as dynamic defects were observed and intensively studied in MG systems. A theoretical perspective of flow units was also developed, which not only successfully explains many important experimental phenomena, but also offers the guideline to optimize properties of glasses.

In a new review article published in the Beijing-based National Science Review, scientists at the Institute of Physics, Chinese Academy of Sciences, Beijing, China present the latest advances in the study of flow units which behaves as dynamic defects in metallic glassy materials. Co-authors Zheng Wang and Wei-Hua Wang summarized the characteristics, activation and evolution processes of flow units as well as their correlation with mechanical properties including plasticity, strength, fracture, and dynamic relaxation.

These scientists likewise outline applications of this flow unit perspective and some challenges.

"We show that flow units that are similar to the structural defects such as dislocations, are crucial in the optimization and design of metallic glassy materials via the thermal, mechanical and high pressure tailoring of these units." they state.

"It took more than half a century to finally identify the dislocations in a crystals, which have a much simpler configuration compared to glass. "History doesn't repeat itself, but it often rhymes" said by Mark Twain. The discovery of dynamic defects in glasses has followed a similar track to the identification of dislocations in crystals, and now we at the precipice of final answers to a longstanding questions."
-end-
See the article:

Zheng Wang and Wei-Hua Wang
Flow Units as Dynamic Defects of Flow Units in Metallic Glassy Materials
Natl Sci Rev 2018; doi.org/10.1093/nsr/nwy084
https://doi.org/10.1093/nsr/nwy084

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Science China Press

Related Glass Articles:

On-demand glass is right around the corner
A research group coordinated by physicists of the University of Trento was able to probe internal stress in colloidal glasses, a crucial step to control the mechanical properties of glasses.
Glass from a 3D printer
ETH researchers used a 3D printing process to produce complex and highly porous glass objects.
Making glass more clear
Northwestern University researchers have developed an algorithm that makes it possible to design glassy materials with dynamic properties and predict their continually changing behaviors.
Researchers use 3D printer to print glass
For the first time, researchers have successfully 3D printed chalcogenide glass, a unique material used to make optical components that operate at mid-infrared wavelengths.
New family of glass good for lenses
A new composition of germanosilicate glass created by adding zinc oxide has properties good for lens applications, according to Penn State researchers.
In-depth insights into glass corrosion
Silicate glass has many applications, including the use as a nuclear waste form to immobilize radioactive elements from spent fuel.
Laser-fabricated crystals in glass are ferroelectric
For the first time, a team of researchers from Lehigh University, Oak Ridge National Laboratory, Lebanon Valley College and Corning Inc. has demonstrated that laser-generated crystals confined in glass retain controllable ferroelectric properties, key to creating faster, more efficient optical communication systems.
New research questions the 'Glass Cliff' and corroborates the persistent 'Glass Ceiling'
Are women more likely to be appointed to leadership positions in crisis situations when companies are struggling with declining profits?
A new path through the looking-glass
Exploring the mystery of the molecular handedness in nature, scientists have proposed a new experimental scheme to create custom-made mirror molecules for analysis.
Careful -- You are made of glass
Researcher Otger Campas and his group uncover how tissues and organs are sculpted during embryogenesis
More Glass News and Glass Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.