Nav: Home

Flow units: Dynamic defects in metallic glasses

November 06, 2018

In a crystal, structural defects such as dislocations or twins are well defined and largely determine the mechanical and other properties. These defects can be easily identified as the broken long-range atomic order. However, the lack of a periodic microstructure makes the searching of similar structural defects a difficult task in amorphous materials. Recent studies found that amorphous materials are intrinsically spatially and temporally heterogeneous, which implies the possibility to identify the dynamic defect in a glass. Metallic glass (MG) with many unique properties is considered as a good model material for its relative simple structure. In the last few years, flow units as dynamic defects were observed and intensively studied in MG systems. A theoretical perspective of flow units was also developed, which not only successfully explains many important experimental phenomena, but also offers the guideline to optimize properties of glasses.

In a new review article published in the Beijing-based National Science Review, scientists at the Institute of Physics, Chinese Academy of Sciences, Beijing, China present the latest advances in the study of flow units which behaves as dynamic defects in metallic glassy materials. Co-authors Zheng Wang and Wei-Hua Wang summarized the characteristics, activation and evolution processes of flow units as well as their correlation with mechanical properties including plasticity, strength, fracture, and dynamic relaxation.

These scientists likewise outline applications of this flow unit perspective and some challenges.

"We show that flow units that are similar to the structural defects such as dislocations, are crucial in the optimization and design of metallic glassy materials via the thermal, mechanical and high pressure tailoring of these units." they state.

"It took more than half a century to finally identify the dislocations in a crystals, which have a much simpler configuration compared to glass. "History doesn't repeat itself, but it often rhymes" said by Mark Twain. The discovery of dynamic defects in glasses has followed a similar track to the identification of dislocations in crystals, and now we at the precipice of final answers to a longstanding questions."
-end-
See the article:

Zheng Wang and Wei-Hua Wang
Flow Units as Dynamic Defects of Flow Units in Metallic Glassy Materials
Natl Sci Rev 2018; doi.org/10.1093/nsr/nwy084
https://doi.org/10.1093/nsr/nwy084

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Science China Press

Related Glass Articles:

Breaking glass in infinite dimensions
With the help of some mathematical wizardry borrowed from particle physics -- plus around 30 pages of algebraic calculations, all done by hand -- Duke postdoctoral fellow Sho Yaida has laid to rest a 30-year-old mystery about the nature of glass.
Nature: 3-D-printing of glass now possible
3-D-printing allows extremely small and complex structures to be made even in small series.
Making batteries from waste glass bottles
Researchers at the University of California, Riverside's Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries.
Atomic 're-packing' behind metallic glass mystery
A new method uncovers a four-decade mystery about metallic glass that could allow researchers to fine-tune its properties to develop new materials.
Glass's off-kilter harmonies
The transport of heat in amorphous materials is largely determined by the behavior of phonons -- quasiparticles associated with the collective vibrations of atoms.  Researchers from Georgia Tech developed a new way to calculate the heat contribution of phonons using computer simulations.
More Glass News and Glass Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...