Nav: Home

New analysis about synchronization transitions improves knowledge of physical, biological systems

November 06, 2018

ATLANTA--In physical, biological and technological systems, the time that a system's components take to influence each other can affect the transition to synchronization, an important finding that improves understanding of how these systems function, according to a study led by Georgia State University.

The researchers developed analytical formulas that helped them arrive at these conclusions. Their findings are published in the journal Scientific Reports.

Synchronization is common in many natural and man-made oscillator systems, where considerable function emerges as a result of cooperative behaviors of many interacting elements in the systems. Examples of synchronizing systems include neurons in the brain, cardiac pacemaker cells, rhythmically chirping crickets, an audience's applause in concert halls and semiconductor lasers. In these systems, interacting elements, also called oscillators, have their own rhythms, but the interactions can lead to a common rhythm. The interaction delays, which are always there in any real system due to the finite speed of the movement of signals, processing times and other factors, can modify the ultimate rhythm. This study looks at how this happens.

"Interaction strength and time delays can change the way synchronization appears and develops," said Dr. Mukesh Dhamala, associate professor in the Department of Physics and Astronomy and Neuroscience Institute at Georgia State. "The system's history makes a difference in synchronization. This paper looks at the effects of time delays in critical interaction strength needed to achieve synchronization of coupled oscillators. The synchronization transitions remind us of the first-order and second-order phase transitions commonly studied in statistical physics.

"These findings can be helpful to make sense of experimentally observed network oscillations, for example, the neural oscillations in the brain where conduction time delay between two connected regions ranges from a few to tens of milliseconds. A smooth or abrupt transition to synchronization might be helpful in distinguishing a normal brain function (e.g. perceptual decision) from a dysfunction (e.g. epileptic seizure)."

In this study, the researchers introduced time delays and changed the coupling strength between oscillators to understand transitions to and out of abrupt synchronization. They found that time delay does not affect the transition point for abrupt synchronization when coupling strength is decreased from a synchronized state, but time delay can shift the transition point when coupling strength is increased from an unsynchronized state.
-end-
Co-authors of the study include Hui Wu of Clark Atlanta University and Ling Kang and Zonghua Liu of East China Normal University in Shanghai, China.

To read the study, visit https://www.nature.com/articles/s41598-018-33845-6.

Drs. Wu and Dhamala also recently published another related study in the journal Physical Review E that explored how coupled oscillators behave under time delays when there is an attractive (positive) and repulsive (negative) coupling. They found that synchronized, unsynchronized and multi-stable states are all possible under time delays. They arrived at unique analytical solutions of critical boundaries for all these possible states, solving another long-standing problem in nonlinear dynamics. This work can be useful in trying to understand network dynamics of excitatory and inhibitory neurons in the brain, where time delays are inevitable and can vary during neurodevelopment, aging and neurodegeneration. To read more, visit https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.032221.

Georgia State University

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.