Nav: Home

Open source machine learning tool could help choose cancer drugs

November 06, 2018

The selection of a first-line chemotherapy drug to treat many types of cancer is often a clear-cut decision governed by standard-of-care protocols, but what drug should be used next if the first one fails?

That's where Georgia Institute of Technology researchers believe their new open source decision support tool could come in. Using machine learning to analyze RNA expression tied to information about patient outcomes with specific drugs, the open source tool could help clinicians chose the chemotherapy drug most likely to attack the disease in individual patients.

In a study using RNA analysis data from 152 patient records, the system predicted the chemotherapy drug that had provided the best outcome 80 percent of the time.

The researchers believe the system's accuracy could further improve with inclusion of additional patient records along with information such as family history and demographics.

"By looking at RNA expression in tumors, we believe we can predict with high accuracy which patients are likely to respond to a particular drug," said John McDonald, a professor in the Georgia Tech School of Biological Sciences and director of its Integrated Cancer Research Center. "This information could be used, along with other factors, to support the decisions clinicians must make regarding chemotherapy treatment."

The research, which could add another component to precision medicine for cancer treatment, was reported November 6 in the journal Scientific Reports. The work was supported in part by the Atlanta-based Ovarian Cancer Institute, the Georgia Research Alliance, and a National Institutes of Health fellowship.

As with other machine learning decision support tools, the researchers first "trained" their system using one part of a data set, then tested its operation on the remaining records. In developing the system, the researchers obtained records of RNA from tumors, along with with the outcome of treatment with specific drugs. With only about 152 such records available, they first used data from 114 records to train the system. They then used the remaining 38 records to test the system's ability to predict, based on the RNA sequence, which chemotherapy drugs would have been the most likely to be useful in shrinking tumors.

The research began with ovarian cancer, but to expand the data set, the research team decided to include data from other cancer types - lung, breast, liver and pancreatic cancers - that use the same chemotherapy drugs and for which the RNA data was available. "Our model is predicting based on the drug and looking across all the patients who were treated with that drug regardless of cancer type," McDonald said.

The system produces a chart comparing the likelihood that each drug will have an effect on a patient's specific cancer. If the system were to be used in a clinical setting, McDonald believes doctors would use the predictions along with other critical patient information.

Because it measures the expression levels for genes, analysis of RNA could have an advantage over sequencing of DNA, though both types of information could be useful in choosing a drug therapy, he said. The cost of RNA analysis is declining and could soon cost less than a mammogram, McDonald said.

The system will be made available as open source software, and McDonald's team hopes hospitals and cancer centers will try it out. Ultimately, the tool's accuracy should improve as more patient data is analyzed by the algorithm. He and his collaborators believe the open source approach offers the best path to moving the algorithm into clinical use.

"To really get this into clinical practice, we think we've got to open it up so that other people can try it, modify if they want to, and demonstrate its value in real-world situations," McDonald said. "We are trying to create a different paradigm for cancer therapy using the kind of open source strategy used in internet technology."

Open source coding allows many experts across multiple fields to review the software, identify faults and recommend improvements, said Fredrik Vannberg, an assistant professor in the Georgia Tech School of Biological Sciences. "Most importantly, that means the software is no longer a black box where you can't see inside. The code is openly shared for anybody to improve and check for potential issues."

Vannberg envisions using the decision-support tool to create "virtual tumor boards" that would bring together broad expertise to examine RNA data from patients worldwide.

"The hope would be to provide this kind of analysis for any new cancer patient who has this kind of RNA analysis done," he added. "We could have a consensus of dozens of the smartest people in oncology and make them available for each patient's unique situation."

The tool is available on the open source Github repository for download and use. Hospitals and cancer clinics may install the software and use it without sharing their results, but the researchers hope organizations using the software will help the system improve.

"The accuracy of machine learning will improve not only as the amount of training data increases, but also as the diversity within that data increases," said Evan Clayton, a Ph.D. student in the Georgia Tech School of Biological Sciences. "There's potential for improvement by including DNA data, demographic information and patient histories. The model will incorporate any information if it helps predict the success of specific drugs."
-end-
In addition to those already mentioned, the research team included Cai Huang, Lilya Matyunina, and DeEtte McDonald from the Georgia Tech School of Biological Sciences, and Benedict Benigno from the Georgia Tech Integrated Cancer Research Center and the Ovarian Cancer Institute.

Support for the project came from the Ovarian Cancer Institute, and equipment used was provided by the Georgia Research Alliance. In addition, the National Institutes of Health supported a graduate fellowship.

CITATION: Cai Huang, et al., "Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy," (Scientific Reports 2018). http://dx.doi.org/10.1038/s41598-018-34753-5

Georgia Institute of Technology

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...