Nav: Home

Exceptional fossils may need a breath of air to form

November 06, 2019

Some of the world's most exquisite fossil beds were formed millions of years ago during time periods when the Earth's oceans were largely without oxygen.

That association has led paleontologists to believe that the world's best-preserved fossil collections come from choked oceans. But research led by The University of Texas at Austin has found that while low oxygen environments set the stage, it takes a breath of air to catalyze the fossilization process.

"The traditional thinking about these exceptionally preserved fossil sites is wrong," said lead author Drew Muscente. "It is not the absence of oxygen that allows them to be preserved and fossilized. It is the presence of oxygen under the right circumstances."

The research was published in the journal PALAIOS on November 5.

Muscente conducted the research during a postdoctoral research fellowship at the UT Jackson School of Geosciences. He is currently an assistant professor at Cornell College in Mount Vernon, Iowa. The research co-authors are Jackson School Assistant Professor Rowan Martindale, Jackson School undergraduate students Brooke Bogan and Abby Creighton and University of Missouri Associate Professor James Schiffbauer.

The best-preserved fossil deposits are called "Konservat-lagerstätten." They are rare and scientifically valuable because they preserve soft tissues along with hard ones - which in turn, preserves a greater variety of life from ancient ecosystems.

"When you look at lagerstätten, what's so interesting about them is everybody is there," said Bogan. "You get a more complete picture of the animal and the environment, and those living in it."

The research examined the fossilization history of an exceptional fossil site located at Ya Ha Tinda Ranch in Canada's Banff National Park. The site, which Martindale described in a 2017 paper, is known for its cache of delicate marine specimens from the Early Jurassic - such as lobsters and vampire squids with their ink sacks still intact--preserved in slabs of black shale.

During the time of fossilization, about 183 million years ago, high global temperatures sapped oxygen from the oceans. To determine if the fossils did indeed form in an oxygen-deprived environment, the team analyzed minerals in the fossils. Since different minerals form under different chemical conditions, the research could determine if oxygen was present or not.

"The cool thing about this work is that we can now understand the modes of formation of these different minerals as this organism fossilizes," Martindale said. "A particular pathway can tell you about the oxygen conditions."

The analysis involved using a scanning electron microscope to detect the mineral makeup.

"You pick points of interest that you think might tell you something about the composition," said Creighton, who analyzed a number of specimens. "From there you can correlate to the specific minerals."

The workup revealed that the vast majority of the fossils are made of apatite - a phosphate-based mineral that needs oxygen to form. However, the research also found that the climatic conditions of a low-oxygen environment helped set the stage for fossilization once oxygen became available.

That's because periods of low ocean oxygen are linked to high global temperatures that raise sea levels and erode rock, which is a rich source of phosphate to help form fossils. If the low oxygen environment persisted, this sediment would simply release its phosphate into the ocean. But with oxygen around, the phosphate stays in the sediment where it could start the fossilization process.

Muscente said that the apatite fossils of Ya Ha Tinda point to this mechanism.

The research team does not know the source of the oxygen. But Muscente wasn't surprised to find evidence for it because the organisms that were fossilized would have needed to breathe oxygen when they were alive.

The researchers plan to continue their work by analyzing specimens from exceptional fossil sites in Germany and the United Kingdom that were preserved around the same time as the Ya Ha Tinda specimens and compare their fossilization histories.
-end-
The research was funded by the National Science Foundation and the Jackson School of Geosciences.

University of Texas at Austin

Related Fossils Articles:

Exceptional fossils may need a breath of air to form
New research led by The University of Texas at Austin has found that a long held belief by paleontologists about the fossilization process may be wrong.
New 'king' of fossils discovered in Australia
Fossils of a giant new species from the long-extinct group of sea creatures called trilobites have been found on Kangaroo Island, South Australia.
Two tiny beetle fossils offer evolution and biogeography clues
Recently, an international team led by Dr. CAI Chenyang, from the Nanjing Institute of Geology and Palaeontology of the Chinese Academy of Sciences, reported two new and rare species of the extant family Clambidae from Burmese amber: Acalyptomerus thayerae Cai and Lawrence, 2019, and Sphaerothorax uenoi Cai and Lawrence, 2019.
Newly described fossils could help reveal why some dinos got so big
A new, in-depth anatomical description of the best preserved specimens of a car-sized sauropod relative from North America could help paleontologists with unraveling the mystery of why some dinosaurs got so big.
Lilly Pilly fossils reveal snowless Snowy Mountains
Leaf fossils discovered high in Australia's Snowy Mountains have revealed a past history of warmer rainforest vegetation and a lack of snow, in contrast with the alpine vegetation and winter snow-covered slopes of today.
Molecular fossils confirm Dickinsonia as one of Earth's earliest animals
By identifying specific biomarkers preserved alongside fossils of oval-shaped life forms from the Ediacaran Period, fossils from which are typically considered one of the greatest mysteries in paleontology, researchers say the ovular organism is not a fungus or protist, as some have thought, but an early animal.
Fossils reveal diverse mesozoic pollinating lacewings
A research group led by professor WANG Bo from the Nanjing Institute of Geology and Palaeontology has provided new insight into the niche diversity, chemical communication, and defense mechanisms of Mesozoic pollinating insects.
Easy-Bake fossils
Scientists have discovered a new way to simulate the fossilization process in a lab in about 24 hours.
Plant fossils provide new insight into the uplift history of SE Tibet
Plenty of well-preserved plant fossils with well constrained geological ages were discovered from Markam Basin in SE Tibetan Plateau.
Fossils show ancient primates had grooming claws as well as nails
Humans and other primates are outliers among mammals for having nails instead of claws.
More Fossils News and Fossils Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab