Nav: Home

Exceptional fossils may need a breath of air to form

November 06, 2019

Some of the world's most exquisite fossil beds were formed millions of years ago during time periods when the Earth's oceans were largely without oxygen.

That association has led paleontologists to believe that the world's best-preserved fossil collections come from choked oceans. But research led by The University of Texas at Austin has found that while low oxygen environments set the stage, it takes a breath of air to catalyze the fossilization process.

"The traditional thinking about these exceptionally preserved fossil sites is wrong," said lead author Drew Muscente. "It is not the absence of oxygen that allows them to be preserved and fossilized. It is the presence of oxygen under the right circumstances."

The research was published in the journal PALAIOS on November 5.

Muscente conducted the research during a postdoctoral research fellowship at the UT Jackson School of Geosciences. He is currently an assistant professor at Cornell College in Mount Vernon, Iowa. The research co-authors are Jackson School Assistant Professor Rowan Martindale, Jackson School undergraduate students Brooke Bogan and Abby Creighton and University of Missouri Associate Professor James Schiffbauer.

The best-preserved fossil deposits are called "Konservat-lagerstätten." They are rare and scientifically valuable because they preserve soft tissues along with hard ones - which in turn, preserves a greater variety of life from ancient ecosystems.

"When you look at lagerstätten, what's so interesting about them is everybody is there," said Bogan. "You get a more complete picture of the animal and the environment, and those living in it."

The research examined the fossilization history of an exceptional fossil site located at Ya Ha Tinda Ranch in Canada's Banff National Park. The site, which Martindale described in a 2017 paper, is known for its cache of delicate marine specimens from the Early Jurassic - such as lobsters and vampire squids with their ink sacks still intact--preserved in slabs of black shale.

During the time of fossilization, about 183 million years ago, high global temperatures sapped oxygen from the oceans. To determine if the fossils did indeed form in an oxygen-deprived environment, the team analyzed minerals in the fossils. Since different minerals form under different chemical conditions, the research could determine if oxygen was present or not.

"The cool thing about this work is that we can now understand the modes of formation of these different minerals as this organism fossilizes," Martindale said. "A particular pathway can tell you about the oxygen conditions."

The analysis involved using a scanning electron microscope to detect the mineral makeup.

"You pick points of interest that you think might tell you something about the composition," said Creighton, who analyzed a number of specimens. "From there you can correlate to the specific minerals."

The workup revealed that the vast majority of the fossils are made of apatite - a phosphate-based mineral that needs oxygen to form. However, the research also found that the climatic conditions of a low-oxygen environment helped set the stage for fossilization once oxygen became available.

That's because periods of low ocean oxygen are linked to high global temperatures that raise sea levels and erode rock, which is a rich source of phosphate to help form fossils. If the low oxygen environment persisted, this sediment would simply release its phosphate into the ocean. But with oxygen around, the phosphate stays in the sediment where it could start the fossilization process.

Muscente said that the apatite fossils of Ya Ha Tinda point to this mechanism.

The research team does not know the source of the oxygen. But Muscente wasn't surprised to find evidence for it because the organisms that were fossilized would have needed to breathe oxygen when they were alive.

The researchers plan to continue their work by analyzing specimens from exceptional fossil sites in Germany and the United Kingdom that were preserved around the same time as the Ya Ha Tinda specimens and compare their fossilization histories.
-end-
The research was funded by the National Science Foundation and the Jackson School of Geosciences.

University of Texas at Austin

Related Fossils Articles:

Ancestor of all animals identified in Australian fossils
A team led by UC Riverside geologists has discovered the first ancestor on the family tree that contains most animals today, including humans.
Metabolic fossils from the origin of life
Since the origin of life, metabolic networks provide cells with nutrition and energy.
Fossils of the future to mostly consist of humans, domestic animals
In a co-authored paper published online in the journal Anthropocene, University of Illinois at Chicago paleontologist Roy Plotnick argues that the fossil record of mammals will provide a clear signal of the Anthropocene era.
Exceptional fossils may need a breath of air to form
New research led by The University of Texas at Austin has found that a long held belief by paleontologists about the fossilization process may be wrong.
New 'king' of fossils discovered in Australia
Fossils of a giant new species from the long-extinct group of sea creatures called trilobites have been found on Kangaroo Island, South Australia.
Two tiny beetle fossils offer evolution and biogeography clues
Recently, an international team led by Dr. CAI Chenyang, from the Nanjing Institute of Geology and Palaeontology of the Chinese Academy of Sciences, reported two new and rare species of the extant family Clambidae from Burmese amber: Acalyptomerus thayerae Cai and Lawrence, 2019, and Sphaerothorax uenoi Cai and Lawrence, 2019.
Newly described fossils could help reveal why some dinos got so big
A new, in-depth anatomical description of the best preserved specimens of a car-sized sauropod relative from North America could help paleontologists with unraveling the mystery of why some dinosaurs got so big.
Lilly Pilly fossils reveal snowless Snowy Mountains
Leaf fossils discovered high in Australia's Snowy Mountains have revealed a past history of warmer rainforest vegetation and a lack of snow, in contrast with the alpine vegetation and winter snow-covered slopes of today.
Molecular fossils confirm Dickinsonia as one of Earth's earliest animals
By identifying specific biomarkers preserved alongside fossils of oval-shaped life forms from the Ediacaran Period, fossils from which are typically considered one of the greatest mysteries in paleontology, researchers say the ovular organism is not a fungus or protist, as some have thought, but an early animal.
Fossils reveal diverse mesozoic pollinating lacewings
A research group led by professor WANG Bo from the Nanjing Institute of Geology and Palaeontology has provided new insight into the niche diversity, chemical communication, and defense mechanisms of Mesozoic pollinating insects.
More Fossils News and Fossils Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.