Nav: Home

CoP-electrocatalytic reduction of nitroarenes: a controllable way to azoxy-, azo- and amino-aromatic

November 06, 2019

Azoxy-, azo- and amino-aromatics are among the most widely used building blocks found important applications in materials science, pharmaceuticals and synthetic chemistry. Especially, azobenzenes are considered as one of the largest and most versatile class of organic dyes, accounting for around 70% of worldwide production of industrial dyes. Nitro reduction was a direct and commonly used way to access azoxy-, azo- and amino-compounds due to their wide commercial availability and ease of implementation. However, the reduction degree is hard to control due to its multiple electron-proton coupled steps. Amine products are always obtained for current methods, whereas the synthesis of highly valuable azoxy- and azo-compounds with high selectivity remains a critical challenge. Additionally, flammable and high pressure hydrogen, toxic hydrazine hydrate, etc. are still the main hydrogen sources. They cause serious safety risk and environmental concerns as well as leading to the poor functional group compatibility.

In this regard, the selective and green synthesis of azoxy-, azo- and amino-compounds in a controllable manner is highly desirable. In a new research article published in National Science Review, the Zhang group at Tianjin University presents a latest advance in electrochemical synthesis of azoxy-, azo- and amino-aromatics in aqueous solution through nitro reduction over a CoP nanosheet cathode. The products selectivity are well tuned by just applying different potentials, which alters the concentration and types of reactive intermediates such as nitrosobenzene, phenylhydroxylamine or *H at the electrode surface and finally determining the product distributions.

Therefore, the Zhang group proposed a facile potential-tuned strategy for the efficient synthesis of azoxy-, azo- and amino-aromatics via aqueous selective reduction of nitroarene feedstocks over a CoP nanosheet cathode. A variety of azoxy-, azo- and amino-products bearing different functional groups are fabricated with up to 99% selectivity and 99% yield. Interestingly, the deuterated amines with up to 99% deuterated content can be easily prepared by replacing water with deuterated water, which are difficult to obtain by current methods. Importantly, they can develop their method to paired oxidation of octlyamine and reduction of nitro substrate in a CoP || Ni2P two-electrode electrolyzer to simultaneously generate octylnitrile and azoxy-aromatics with high selectivity and efficiency using a 1.5 V battery. Only 1.25 V is required to achieve a current density of 20 mA cm-2, which is much lower than that of overall water splitting (1.70 V). Their findings may pave a promising distributed approach to produce both azoxy aromatic and nitrile products with low cost and high efficiency and the potential-tuned strategy by using water as the hydrogenation source can find wide applications in other types of electrochemical reduction reactions for controllable and green synthesis.
-end-
See the article:

Potential-Tuned Selective Electrosynthesis of Azoxy-, Azo- and Amino-Aromatics over a CoP Nanosheet Cathode
Xiaodan Chong, Cuibo Liu, Yi Huang, Chenqi Huang, Bin Zhang
Natl Sci Rev DOI: 10.1093/nsr/nwz146 https://doi.org/10.1093/nsr/nwz146

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Science China Press

Related Water Articles:

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.
Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.
Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.
The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.
Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.
What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.
How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.
Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.
Our water cycle diagrams give a false sense of water security
Pictures of the earth's water cycle used in education and research throughout the world are in urgent need of updating to show the effects of human interference, according to new analysis by an international team of hydrology experts.
Water management helped by mathematical model of fresh water lenses
In this paper, the homeostasis of water lenses was explained as an intricate interaction of the following physical factors: infiltration to the lens from occasional (sporadic) rains, permanent evaporation from the water table, buoyancy due to a density contrast of the fresh and saline water, and the force of resistance to water motion from the dune sand.
More Water News and Water Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.