How hot (and not-so-hot) compounds in chili peppers change during ripening

November 06, 2019

Anyone who has tasted a hot chili pepper has felt the burn of capsaicinoids, the compounds that give peppers their spiciness, as well as possible health benefits. Related pepper compounds, called capsinoids, have similar properties, minus the heat, so they are attractive as potential functional food ingredients and supplements. Now, researchers reporting in ACS' Journal of Agricultural and Food Chemistry have measured amounts of both compounds in three types of chili peppers as they ripen.

Hot peppers are cultivated all over the world for use as foods, spices and ingredients. The spiciness, or pungency, of chili peppers depends on the accumulation of capsaicinoids. Although capsinoids have similar structures to capsaicinoids, they are about 1,000 times less pungent. Scientists have reported health benefits for both groups of compounds, including antioxidant, anti-inflammatory, pain-relieving, anticancer and anti-obesity effects. However, the lower pungency of capsinoids could make them more promising candidates for the development of drugs, supplements and functional foods. Ana Garcés-Claver and colleagues wanted to analyze the capsaicinoid and capsinoid content of three types of chili peppers as they ripened: the spicy Chiltepin and Tampiqueño 74 from Mexico, and the super-hot Bhut Jolokia from India.

The researchers grew and collected the three types of peppers at various stages of fruit development. Using a sensitive mass spectrometry technique, they found that capsinoids in all three peppers began to accumulate 20 days after flower opening, reaching a peak at 40 days, and then decreasing until 60 days after flowering. In contrast, capsaicinoid accumulation varied between the super-hot Bhut Jolokia and the other two peppers. In Chiltepin and Tampiqueño 74, capsaicinoid accumulation followed a similar pattern, although at higher levels, as capsinoids. But in Bhut Jolokia, capsaicinoids were detected earlier (at 10 days post-flowering) and reached a maximum later (60 days post-flowering), allowing the pepper to accumulate much higher levels of the spicy compound. These results could guide future breeding studies to understand factors that affect capsaicinoid and capsinoid accumulation, the researchers say.
The authors acknowledge funding from the National Institute for Agricultural and Food Research and Technology (Spain), the European Regional Development Fund and the University of Cadiz.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a nonprofit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact

Follow us on Twitter | Facebook

American Chemical Society

Related Agricultural Articles from Brightsurf:

Researchers map genomes of agricultural monsters
The University of Cincinnati is unlocking the genomes of creepy agricultural pests like screwworms that feast on livestock from the inside out and thrips that transmit viruses to plants.

Genomes published for major agricultural weeds
Representing some of the most troublesome agricultural weeds, waterhemp, smooth pigweed, and Palmer amaranth impact crop production systems across the US and elsewhere with ripple effects felt by economies worldwide.

Tennessee agricultural sectors taking a hit from COVID-19
The latest research from the University of Tennessee Institute of Agriculture indicates that the COVID-19 pandemic has affected all aspects of agricultural commodity production and distribution, leading to substantial price declines and reduced income for farmers.

Agricultural pickers in US to see unsafely hot workdays double by 2050
Temperature increases by 2050 and 2100 in U.S. counties where crops are grown will double, then triple the number of unsafe workdays.

Digital agriculture paves the road to agricultural sustainability
In a study published in Nature Sustainability, researchers outline how to develop a more sustainable land management system through data collection and stakeholder buy-in.

Significant potential demonstrated by digital agricultural advice
2019 Economics Nobel Laureate co-publishes paper demonstrating the potential for digital agricultural advice to 'sustainably' raise 'agricultural productivity' at low cost for 2 billion smallholder farming families.

Sustaining roads with grape and agricultural waste
The US spends $5 billion a year to repair damages to road infrastructure from winter snow and ice control operations and the use of traditional deicers.

New report says accelerating global agricultural productivity growth is critical
The 2019 Global Agricultural Productivity Report, released today by Virginia Tech's College of Agriculture and Life Sciences, shows agricultural productivity growth -- increasing output of crops and livestock with existing or fewer inputs -- is growing globally at an average annual rate of 1.63%.

The benefits of updating agricultural drainage infrastructure
The massive underground infrastructure that allows farmers to cultivate crops on much of the world's most productive land has outlived its design life and should be updated, according to a new study.

The next agricultural revolution is here
By using modern gene-editing technologies to learn key insights about past agricultural revolutions, two plant scientists are suggesting that the next agricultural revolution could be at hand.

Read More: Agricultural News and Agricultural Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to