The first Cr-based nitrides superconductor Pr3Cr10-xN11

November 06, 2019

Since the discovery of superconductivity in the chromium-based compound CrAs, which is more complex than those within the realm of the Bardeen-Cooper-Schrieffer (BCS) theory, the study on chromium based superconductors has attracted much attention. Among the 3d transitional metallic compounds, the Cr and Mn based materials can hardly become superconducting due to robust static magnetism which can destroy the superconductivity. Following the discovery of superconductivity in CrAs, a search for new chromium based superconducting materials was conducted. Recently, quasi one-dimensional A2Cr3As3 and ACr3As3 (A =Na, K, Rb, Cs) were reported in other arsenide materials. Exploration of those quasi one-dimensional superconductor is a hot spot primarily owing to their reduced dimensionality, significant electron correlations, and possible unconventional superconductivity.

Recently, Wei Wu, Jianlin Luo et al. from Institute of Physics, Chinese Academy of Sciences, and Kai Liu from Renmin University of China now report the discovery of the first Cr-based Nitrides superconductor of Pr3Cr10-xN11 with cubic structure. Pr3Cr10-xN11 was first synthesized and characterized by Broil et al. in 1995. The compound crystallizes in space group Fm-3m (No. 225) with lattice constant a = 12.891 Å. It contains 192 atoms in a face-centered cubic (FCC) unit cell with 3 kinds of building blocks as illustrated in Fig (a).

The electrical resistivity [Fig (b)], magnetization and specific heat of Pr3Cr10-xN11 show bulk superconductivity at 5.25 K. The superconductivity in Pr3Cr10-XN11 shows several distinct characters. A relatively large upper critical field is found at the zero-temperature limit, Hc2(0) ~ 12.6 T, which is larger than the Pauli limit for paramagnetic pair-breaking field as shown in Fig (c). The material has a large electronic specific-heat coefficient of 170 mJ K-2 mol-1, about 10 times larger than that estimated by the electronic structure calculation, which suggests that correlations between 3d electrons is very strong in Pr3Cr10-xN11, and thus quantum fluctuations might be involved. From electronic structure calculations, the density of states at the Fermi energy is predominately contributed by Cr 3d electrons. This result demonstrates that Pr3Cr10-xN11 is the first Cr-based superconductor discovered in Chromium Nitrides and it represents a rare example that possibly unconventional superconductivity emerges in a 3D system with strong electron correlations.
-end-
See the article:

Wei Wu, Kai Liu, Yanjie Li, Zhenhai Yu, Desheng Wu, Yuting Shao, Shihang Na, Gang Li, Ruizhen Huang, Tao Xiang and Jianlin Luo
Superconductivity in Chromium Nitrides Pr3Cr10-xN11 with Strong Electron Correlations
https://doi.org/10.1093/nsr/nwz129

Science China Press

Related Superconductivity Articles from Brightsurf:

New kind of superconductivity discovered
Superconductivity is a phenomenon where an electric circuit loses its resistance and becomes extremely efficient under certain conditions.

Room temperature superconductivity creeping toward possibility
The possibility of achieving room temperature superconductivity took a tiny step forward with a recent discovery by a team of Penn State physicists and materials scientists.

A 'breath of nothing' provides a new perspective on superconductivity
Zero electrical resistance at room temperature? A material with this property, i.e. a room temperature superconductor, could revolutionize power distribution.

New Princeton study takes superconductivity to the edge
The existence of superconducting currents, or supercurrents, along the exterior of a superconductor, has been surprisingly hard to find.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

How a magnet could help boost understanding of superconductivity
Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity.

New study explains why superconductivity takes place in graphene
Theoretical physicists take important step in development of high temperature superconductors.

Better studying superconductivity in single-layer graphene
A new study published in EPJ B demonstrates that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.

Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.

First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.

Read More: Superconductivity News and Superconductivity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.