Structural and biochemical studies clarify the methylation mechanism of anticodon in tRNA

November 06, 2019

Genetic information on DNA is transcribed onto messenger RNA and then is decoded by transfer RNA (tRNA) during protein synthesis. The methylation of ribose of the first position of anticodon (position 34 in tRNA) is commonly observed in tRNAs from three domains of life. This methylation reinforces the codon-anticodon interaction and prevents errors during protein synthesis. We knew that eukaryote, a protein complex between Trm7 and Trm734 (Trm7-Trm734), is the responsible tRNA methyltransferase for this methylation. However, important questions remained. For example, why does Trm7-Trm734 act only on specific tRNA?, and why is Trm734 required for the methylation at position 34 in tRNA? To address these issues, a group at Ehime University (Akira Hirata, Keisuke Okada, Kazunori Yoshii, Hiroyuki Shiraishi and Hiroyuki Hori) working with a group at KEK (Shinya Saijo, Kento Yonezawa and Nobutaka Shimizu) solved the crystal structure of Trm7-Trm734 and measured a small angle X-ray scattering. Based on these structural studies, they performed biochemical studies. Their findings are as follows: Trm7-Trm734 preferentially methylates tRNA transcript variants possessing two of three factors (Cm32, m1G37 and pyrirmidine34). Therefore, tRNAPhe, tRNATrp and tRNALeu are specifically methylated by Trm7-Trm734. Trm7 possesses a Rossmann-fold catalytic domain, while Trm734 consists of three WD40 ?-propeller domains (termed BPA, BPB and BPC). BPA and BPC form a unique V-shaped cleft, which docks with Trm7. Small angle X-ray scattering reveals that Trm7-Trm734 exists as a hetero-dimer in solution and Trm734 is required for the positioning of tRNA for methylation.

It has long been a mystery as to why Trm7-Trm734 acts only on specific tRNAs. The study explains the tRNA recognition mechanism of Trm7-Trm734 and clarifies the roles of the subunits. In humans, the defect of methylation at the first position of anticodon in tRNA causes nosyndromic X-linked intellectual disability. Therefore, this study contributes to the understanding of genetic defects and developments in genetic diagnosis and gene therapy.
The synchrotron radiation experiments were performed at the BL26B1, BL38B1 and BL45XU in the SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2013B1272, 2014A1246, 2014B1063, 2015B2047 and 2016A2547), and at the BL-10C in the Photon Factory with the support of the Platform for Drug Discovery, Informatics, and Structural Life Science (PDIS) from Japan Agency for Medical Research and Development (AMED). This research was partially supported by the Platform Project for Supporting Drug Discovery and Life Science Research [Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)] from AMED under Grant Number JP19am0101071 (support number 0997). Furthermore, the authors thank the Division of Material Science and Applied Protein Research of the Advanced Research Support Center, Ehime University for the Typhoon FLA 7000 system.

Ehime University

Related Methylation Articles from Brightsurf:

Identification of distinct loci for de novo DNA methylation by DNMT3A and DNMT3B during mammalian development
A research team working at The University of Tokyo and Kyoto University in Japan has announced that they have successfully identified specific target sites for the DNA methylases DNMT3A and DNMT3B .

New insights into epigenetic modifications
Scientists at the European Molecular Biology Laboratory in Rome, in collaboration with Tim Bestor at Columbia University in New York and John Edwards at Washington University in St.

From bacteria to you: The biological reactions that sustain our rhythms
Methylation and the circadian clock are both conserved mechanisms found in all organisms.

Large-scale analysis of protein arginine methylation by mass spectrometry
In this research, the researchers offer an overview on state-of-the-art approaches for the high-confidence identification and accurate quantification of protein arginine methylation by high-resolution mass spectrometry methods, which comprise the development of both biochemical and bioinformatics methods.

Oncotarget: DNA methylation of MMPs and TIMPs in atherothrombosis process in carotid plaques
Oncotarget Volume 11, Issue 10 reported that the statistically associated Cp G sites were analyzed in blood samples from two separate atherothrombotic stroke cohorts, ischemic stroke-cohort 1: 37 atherothrombotic patients and 6 controls, ischemic stroke-cohort 2: 80 atherothrombotic patients and 184 controls.

Stressed corals set up progeny for a better life
First evidence that animal DNA methylation patterns can be passed to the next generation.

RNA modification -- Methylation and mopping up
Ludwig-Maximilian-Universitaet (LMU) in Munich researchers have discovered a novel type of chemical modification in bacterial RNAs.

Structural and biochemical studies clarify the methylation mechanism of anticodon in tRNA
Groups in Ehime University, Japan and the High Energy Accelerator Research Organization (KEK), Japan have solved the crystal structure of the eukaryotic Trm7-TRm734 complex, which methylates the ribose at the first position of anticodon in tRNA.

First glimpse at what ancient Denisovans may have looked like, using DNA methylation data
Exactly what our ancient Denisovan relatives might have looked like had been anyone's guess for a simple reason: the entire collection of Denisovan remains includes a pinky bone, three teeth, and a lower jaw.

Methylation of microRNA may be a new powerful biomarker for cancer
Researchers from Osaka University found that levels of methylated microRNA were significantly higher in tissue and serum from cancer patients compared with that from normal controls.

Read More: Methylation News and Methylation Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to