Revealed a mechanism of beta-cells involved in the development of type-1 diabetes

November 06, 2019

Researchers Lorenzo Pasquali and Mireia Ramos-Rodríguez have published recently in Nature Genetics the results of a study on the mechanisms that cause an inflammatory response to trigger pancreatic beta-cell death, leading to the onset of Type 1 Diabetes (T1D). L. Pasquali is a Ramon y Cajal researcher at the Josep Carreras Leukaemia Research Institute (IJC), affiliated with CIBERDEM and the Germans Trias i Pujol Research Institute (IGTP), where he leads the Endocrine Regulatory Genomics group. Mireia Ramos-Rodríguez, the first author of the paper, is a doctoral student in the Endocrine Regulatory Genomics group. The study was carried out in collaboration with Decío Eizirik of ULB (Brussels, Belgium).

In T1D, the immune system selectively destroys pancreatic beta cells, depriving the capacity of this organ to produce insulin, and control blood sugar. In the search for why some people develop T1D, researchers have identified more than 60 regions on the genome where there are genetic variants associated with a higher risk of developing T1D, but their functions are not known yet. Additionally, most of these variants locate in DNA sequences that don't encode proteins and are dismissed as "junk DNA."

The immune attack against pancreatic beta cells is orchestrated by T and B cells, cells of the immune system. These cells infiltrate the pancreatic islets where beta cells live and, by releasing cytokines and chemokines, "dialogue" with the insulin-producing beta cells. Some misunderstanding in this "dialogue" is what ultimately causes beta cells to lose their functions and die. To test the mechanisms underlying this initial stage of the disease, the group analysed changes in gene expression, protein production, and DNA structure in beta-cells exposed to inflammatory cytokines.

Only about two percent of the genome contains sequences that correspond to genes that will translate into vital proteins. Conversely, much vaster parts of the DNA that did not code for genes were thought to have no function. Scientists are increasingly discovering that these regions are significant and rich in regulatory sequences that act as "switches" and control which genes are must turn on and off.

The group found that exposure to inflammatory cytokines changes the regulation of genes in the beta-cells and affects the functioning of the cells. They have mapped approximately 3,600 regions in the non-coding DNA that activate in the pancreatic islets. They also observed that exposure to inflammatory cytokines induces changes in the DNA folding, allowing these non-coding regions to come into contact with their target genes. As a result, thousands of genes are switched on and translated into proteins.

The team found that genetic variants related to an increased risk of developing T1D are in these newly mapped regions of the genome. "DNA variants in such regulatory elements may affect the capacity of the insulin-producing cells to react to an inflammatory environment," says Dr. Pasquali, "this knowledge will allow us to understand the detailed mechanisms whereby specific DNA variants predispose to type 1 diabetes." He adds.

Pasquali's group has used a model of particular interest, as it mimics the conditions islet cells might experience in the early stages of T1D. Much of the T1D genetic risk was shown to affect the immune cells, enforcing their role in the development of the disease. The islet cells themselves have been shown to have genes that control the critical steps in responding to danger signals and the innate immune system. However, linking islet gene regulation to T1D risk has yielded no significant results, until now. This new data opens the door to uncovering molecular mechanisms acting in the islet cells of the pancreas.

Now that the group has mapped out the switches that activate genes responding to an inflammatory environment in the pancreatic islets, it will be much easier to test different hypotheses of how common genetic variants are affecting the islet cells in T1D. Future work could look at different ways that the immune system stresses beta cells in later stages of the disease, for example.

"These results could apply to other diseases," says Mireia Ramos-Rodríguez. "In many cases, we do not understand why the immune cells attack a certain cell type. The dissection of regulatory elements in disease-relevant stimuli brings us closer to understanding the molecular mechanisms not only of T1D but also other autoimmune diseases".
-end-


Josep Carreras Leukaemia Research Institute

Related Diabetes Articles from Brightsurf:

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Diabetes, but not diabetes drug, linked to poor pregnancy outcomes
New research indicates that pregnant women with pre-gestational diabetes who take metformin are at a higher risk for adverse pregnancy outcomes -- such as major birth defects and pregnancy loss -- than the general population, but their increased risk is not due to metformin but diabetes.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.