New technique lays foundation for regenerative cardiac therapies

November 06, 2019

GRAND RAPIDS, Mich. (Nov. 6, 2019) -- Scientists have devised a technique to sort out which heart cells can replicate and which cannot, a critical step toward treatments that may one day help the heart heal itself after injury.

The method, published in the journal Circulation Research, removes a significant roadblock to developing ways to regrow healthy cardiac muscle tissue, a feat not currently possible.

"This new technique solves a longstanding problem that for years has stymied our ability to develop regenerative treatments for the heart," said Stefan Jovinge, M.D., Ph.D., the study's senior author and director of the DeVos Cardiovascular Research Program at Van Andel Institute and Spectrum Health. "It's a major step forward that we aim to translate into improved patient care."

For decades, scientists have searched for ways to harness the heart's regenerative potential to fix damage related to heart attack and heart failure, but their attempts have been largely unsuccessful.

Unlike the skin or bones, which readily heal by stitching together wounds or breaks with new, healthy cells, heart muscle cells largely lose their ability to replicate early in life (instead, they progress through the cell cycle but, in most cases, they do not actually divide). This leaves patients and physicians with only a few surgical options to mitigate further damage and just one option to totally repair the problem should the damage be too severe: a heart transplant.

The new method combines two technologies -- molecular beacon technology and fluorescence activated cell-sorting -- to specifically isolate cells that successfully divide. This will allow scientists to determine the mechanisms underlying heart muscle cells' regenerative potential, which is critical to the development of regenerative strategies aimed to cure patients with heart injury.

"Now that we can accurately identify these cells, we can start to determine the mechanisms that allow them to divide and develop ways to jump-start this process," Jovinge said. "This work is an excellent example of how basic research can have a major impact on future clinical care."

The findings build on previous research by Jovinge's team that showed, contrary to long-held beliefs, some cells in the heart are indeed capable of replicating. This discovery was hailed as a "notable advance of 2015" by Nature Medicine, one of the world's top medical research journals.

In addition to Jovinge, authors include Hsiao-yun Y. Milliron, Ph.D., Matthew J. Weiland, M.S., and Eric J. Kort, M.D., M.S. of the DeVos Cardiovascular Research Program, a joint effort between Van Andel Institute and Spectrum Health. Van Andel Institute's Bioinformatics and Biostatistics Core, Genomics Core and Optical Imaging Core also contributed to this work.

Research reported in this publication was supported by the Richard and Helen DeVos Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of any funding organization.
-end-
ABOUT VAN ANDEL INSTITUTE Van Andel Institute (VAI) is committed to improving the health and enhancing the lives of current and future generations through cutting edge biomedical research and innovative educational offerings. Established in Grand Rapids, Michigan, in 1996 by the Van Andel family, VAI is now home to more than 400 scientists, educators and support staff, who work with a growing number of national and international collaborators to foster discovery. The Institute's scientists study the origins of cancer, Parkinson's and other diseases and translate their findings into breakthrough prevention and treatment strategies. Our educators develop inquiry-based approaches for K-12 education to help students and teachers prepare the next generation of problem-solvers, while our Graduate School offers a rigorous, research-intensive Ph.D. program in molecular and cellular biology.

Van Andel Research Institute

Related Heart Cells Articles from Brightsurf:

Reviving cells after a heart attack
Harvard SEAS researchers have unraveled potential mechanisms behind the healing power of extracellular vesicles and demonstrated their capacity to not only revive cells after a heart attack but keep cells functioning while deprived of oxygen during a heart attack.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

To repair a damaged heart, three cells are better than one
CardioClusters use three types of cells to reduce scar tissue and improve function by integrating into and persisting within damaged heart tissue.

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Changing what heart cells eat could help them regenerate
Switching what the powerhouses of heart cells consume for energy could help the heart regenerate when cells die.

Heart muscle cells change their energy source during heart regeneration
Researchers from the Hubrecht Institute (KNAW) have found that the muscle cells in the heart of zebrafish change their metabolism during heart regeneration.

Special cells contribute to regenerate the heart in Zebrafish
It is already known that zebrafish can flexibly regenerate their hearts after injury.

Skin-cells-turned-to-heart-cells help unravel genetic underpinnings of cardiac function
A small genetic study, published September 30, 2019 in Nature Genetics, identified a protein linked to many genetic variants that affect heart function.

Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.

Read More: Heart Cells News and Heart Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.