New kind of superconductivity discovered

November 06, 2020

Superconductivity is a phenomenon where an electric circuit loses its resistance and becomes extremely efficient under certain conditions. There are different ways in which this can happen which were thought to be incompatible. For the first time researchers discover a bridge between two of these methods to achieve superconductivity. This new knowledge could lead to a more general understanding of the phenomena, and one day to applications.

If you're like most people, there are three states of matter in your everyday life: solid, liquid and gas. You might be familiar with a fourth state of matter called plasma, which is like a gas that got so hot all its constituent atoms came apart, leaving behind a super hot mess of subatomic particles. But did you know about a so-called fifth state of matter at the complete opposite end of the thermometer? It's known as a Bose-Einstein condensate (BEC).

"A BEC is a unique state of matter as it is not made from particles, but rather waves," said Associate Professor Kozo Okazaki from the Institute for Solid State Physics at the University of Tokyo. "As they cool down to near absolute zero, the atoms of certain materials become smeared out over space. This smearing increases until the atoms -- now more like waves than particles -- overlap, becoming indistinguishable from one another. The resulting matter behaves like it's one single entity with new properties the preceding solid, liquid or gas states lacked, such as superconduction. Until recently superconducting BECs were purely theoretical, but we have now demonstrated this in the lab with a novel material based on iron and selenium (a nonmetallic element)."

This is the first time a BEC has been experimentally verified to work as a superconductor; however, other manifestations of matter, or regimes, can also give rise to superconduction. The Bardeen-Cooper-Shrieffer (BCS) regime is an arrangement of matter such that when cooled to near absolute zero, the constituent atoms slow down and line up, which allows electrons to pass through more easily. This effectively brings the electrical resistance of such materials to zero. Both BCS and BEC require freezing-cold conditions and both involve atoms slowing down. But these regimes are otherwise quite different. For a long time, researchers have believed that a more general understanding of superconduction could be reached if these regimes could be found to overlap in some way.

"Demonstrating the superconductivity of BECs was a means to an end; we were really hoping to explore the overlap between BECs and BCSs," said Okazaki. "It was extremely challenging but our unique apparatus and method of observation has verified it -- there is a smooth transition between these regimes. And this hints at a more general underlying theory behind superconduction. It is an exciting time to be working in this field."

Okazaki and his team used the method of ultralow-temperature and high-energy resolution laser-based photoemission spectroscopy to observe the way electrons behaved during a material's transition from BCS to BEC. Electrons behave differently in the two regimes and the change between them helps fill some gaps in the bigger picture of superconduction.

Superconduction is not just a laboratory curiosity though; superconducting devices such as electromagnets are used in applications already, the Large Hadron Collider, the world's largest particle accelerator, being one such example. However, as explained above, these require ultracold temperatures which prohibit the development of superconducting devices we might expect to see every day. So it's no surprise there is great interest in finding ways to form superconductors at higher temperatures, perhaps one day even room temperature.

"With conclusive evidence of superconducting BECs, I think it will prompt other researchers to explore superconduction at higher and higher temperatures," said Okazaki. "It may sound like science fiction for now, but if superconduction can occur near room temperature, our ability to produce energy would greatly increase, and our energy needs would decrease."
-end-
Journal Article

Takahiro Hashimoto, Yuichi Ota, Akihiro Tsuzuki, Tsubaki Nagashima, Akiko Fukushima, Shigeru Kasahara, Yuji Matsuda, Kohei Matsuura, Yuta Mizukami, Takasada Shibauchi, Shik Shin, Kozo Okazaki. Bose-Einstein condensation superconductivity cinduced by disappearance of the nematic state. Science Advances. DOI: 10.1126/sciadv.abb9052

This research is supported by supported by Grants-in-Aid for Scientific Research (KAKENHI) (Grant Numbers JP19H00651, JP19H01818, JP18H05227, JP19H00649, JP18H01177, JP18K13492, JP20H02600), and on Innovative Areas "Quantum Liquid Crystals" (Grant Number JP19H05824, JP19H05826) and "Topological Material Science" (Grant Number JP15H05852) from Japan Society for the Promotion of Science (JSPS). T.H. acknowledges the JSPS Research Fellowship for Young Scientists (DC2).

Useful Links

Institute for Solid State Physics
https://www.issp.u-tokyo.ac.jp/index_en.html
Department of Advanced Materials Science
https://www.k.u-tokyo.ac.jp/pros-e/ams-e/index-e.htm
Trans-Scale Quantum Science Institute
https://www.phys.s.u-tokyo.ac.jp/tsqi/en/about.html

Research Contacts

Associate Professor Kozo Okazaki
Institute for Solid State Physics
The University of Tokyo
5-1-5 Kashiwanoha
Kashiwa, Chiba 277-8581 JAPAN
Email: okazaki@issp.u-tokyo.ac.jp

Press Contact
Mr. Rohan Mehra
Division for Strategic Public Relations
The University of Tokyo
7-3-1 Hongo
Bunkyo-ku, Tokyo 113-8654, JAPAN
Email: press-releases.adm@gs.mail.u-tokyo.ac.jp

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Superconductivity Articles from Brightsurf:

New kind of superconductivity discovered
Superconductivity is a phenomenon where an electric circuit loses its resistance and becomes extremely efficient under certain conditions.

Room temperature superconductivity creeping toward possibility
The possibility of achieving room temperature superconductivity took a tiny step forward with a recent discovery by a team of Penn State physicists and materials scientists.

A 'breath of nothing' provides a new perspective on superconductivity
Zero electrical resistance at room temperature? A material with this property, i.e. a room temperature superconductor, could revolutionize power distribution.

New Princeton study takes superconductivity to the edge
The existence of superconducting currents, or supercurrents, along the exterior of a superconductor, has been surprisingly hard to find.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

How a magnet could help boost understanding of superconductivity
Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity.

New study explains why superconductivity takes place in graphene
Theoretical physicists take important step in development of high temperature superconductors.

Better studying superconductivity in single-layer graphene
A new study published in EPJ B demonstrates that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.

Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.

First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.

Read More: Superconductivity News and Superconductivity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.