How cell processes round up and dump damaged proteins

November 06, 2020

AMHERST, Mass. - In a new paper with results that senior author Eric Strieter at the University of Massachusetts Amherst calls "incredibly surprising," he and his chemistry lab group report that they have discovered how an enzyme known as UCH37 regulates a cell's waste management system.

Strieter says, "It took us eight years to figure it out, and I'm very proud of this work. We had to develop a lot of new methods and tools to understand what this enzyme is doing."

As he explains, a very large protease called a proteasome is responsible for degrading the vast majority of proteins in a cell; it may be made up of as many as 40 proteins. It has been known for more than 20 years that UCH37 is one of the regulatory enzymes that associates with the proteasome, he adds, "but no one understood what it was doing."

It turns out that the crux of the whole process, he adds, is how complicated modifications in a small protein called ubiquitin can be. "In addition to modifying other proteins, ubiquitin modifies itself resulting in a wide array of chains. Some of these chains can have extensive branching. We found that UCH37 removes branchpoints from chains, allowing degradation to proceed."

Writing this week in Molecular Cell, he and first author and Ph.D. candidate Kirandeep Deol, who led and conducted the experiments, with co-authors Sean Crowe, Jiale Du, Heather Bisbee and Robert Guenette, discuss how they answered the question. The work was supported by the NIH's National Institute of General Medical Sciences.

This advance could eventually lead to a new cancer treatment, Strieter says, because cancer cells need the proteasome to grow and proliferate. "Many cancer cells are essentially addicted to proteasome function," he points out. "Its cells produce proteins at such a fast rate that mistakes are made, and if these are not cleared out, cells can't function. Since UCH37 aids in clearing out proteins, it could be a useful therapeutic target to add to the proteasome inhibitors that have already been successful in the clinic."

To begin their years-long process, Strieter says, "we had to come up with a way to generate a wide variety of ubiquitin chains that would represent the potential diversity in a cell. Using that new library of ubiquitin chains allowed us to interrogate the activity of UCH37 in a controlled setting. That series of experiments gave us the first clue that this enzyme was doing something unique."

Another new method they developed uses mass spectrometry to characterize the architecture of ubiquitin chains in complex mixtures. "This allowed us to see that the activity we discovered with our library of substrates was also present in a more heterogenous mixture," Strieter says. Finally, the chemists used the CRISPR gene editing tool to remove UCH37 from cells to measure the impact of UCH37 on proteasome-mediated degradation in vitro and in cells.

This technique led to one more surprise. "Instead of acting as expected and opposing the degradation process, it turned out that UCH37 was removing branchpoints from ubiquitin chains to help degrade proteins," Strieter says. "You would think that by removing the signal for degradation that degradation would be impaired," he adds, "but it didn't work that way."

In future experiments, Strieter and colleagues hope to further explore the degradation process and learn in more detail how UCH37 manages to regulate cellular function.
-end-


University of Massachusetts Amherst

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.