Plasma doughnut currents made hollow, leading to greater efficiency for fusion

November 07, 2002

Doughnuts of plasma can be coaxed into configurations with hollow current rings, providing practical advantages over conventional "filled doughnut" shapes. Simulations suggest they will allow faster turn-on and greater efficiency of future nuclear fusion power plants.

Toroidal tokamaks, doughnut-shaped experimental fusion reactors, use a complex system of magnetic fields to hold a plasma together. Electrical currents flowing in the plasma itself are essential for making the internal magnetic fields needed for confinement. Plasma doughnuts normally carry large electrical currents throughout their volume but researchers expected the direction of the current could be changed back and forth.

However, in recent experiments at the Joint European Torus (JET) and JT-60U tokamaks in England and Japan, researchers tried to reverse the current and found, to their surprise, that the current doughnut became hollow.

Now computer simulations conducted by researchers at the DOE's Princeton Plasma Physics Laboratory (PPPL) using supercomputers at the National Energy Research Supercomputer Center have explained this phenomenon. Instead of the electric current reversing direction, the plasma experiences magnetic reconnection (see highlight 4 above) and the core becomes stabilized with zero current. As soon as a current tries to reverse in the center, it is pulled into the outer ring. (See images.) This new understanding should allow a more practical design of compact next-generation fusion experiments.
Joshua Breslau, PPPL, 609-243-2677,

Extended summary of work and images:

[FI1.005] Simulation Studies of the Role of Reconnection in the "Current Hole" Experiments in JET Abstract:

American Physical Society

Related Magnetic Fields Articles from Brightsurf:

Physicists circumvent centuries-old theory to cancel magnetic fields
A team of scientists including two physicists at the University of Sussex has found a way to circumvent a 178-year old theory which means they can effectively cancel magnetic fields at a distance.

Magnetic fields on the moon are the remnant of an ancient core dynamo
An international simulation study by scientists from the US, Australia, and Germany, shows that alternative explanatory models such as asteroid impacts do not generate sufficiently large magnetic fields.

Modelling extreme magnetic fields and temperature variation on distant stars
New research is helping to explain one of the big questions that has perplexed astrophysicists for the past 30 years - what causes the changing brightness of distant stars called magnetars.

Could megatesla magnetic fields be realized on Earth?
A team of researchers led by Osaka University discovered a novel mechanism called a ''microtube implosion,'' demonstrating the generation of megatesla-order magnetic fields, which is three orders of magnitude higher than those ever experimentally achieved.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

A tiny instrument to measure the faintest magnetic fields
Physicists at the University of Basel have developed a minuscule instrument able to detect extremely faint magnetic fields.

Graphene sensors find subtleties in magnetic fields
Cornell researchers used an ultrathin graphene ''sandwich'' to create a tiny magnetic field sensor that can operate over a greater temperature range than previous sensors, while also detecting miniscule changes in magnetic fields that might otherwise get lost within a larger magnetic background.

Twisting magnetic fields for extreme plasma compression
A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.

How magnetic fields and 3D printers will create the pills of tomorrow
Doctors could soon be administering an entire course of treatment for life-threatening conditions with a 3D printed capsule controlled by magnetic fields thanks to advances made by University of Sussex researchers.

Researchers develop ultra-sensitive device for detecting magnetic fields
The new magnetic sensor is inexpensive to make, works on minimal power and is 20 times more sensitive than many traditional sensors.

Read More: Magnetic Fields News and Magnetic Fields Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to