New research to help fight widespread potato disease

November 07, 2007

Scientists have made a key discovery into the genetics of the bacteria that causes blackleg, an economically damaging disease of potatoes, that could lead to new ways to fight the disease. The researchers at the University of Cambridge, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), found that if a particular gene is inactivated in the bacterium Erwinia carotovora, its ability to damage the plant and cause disease is severely impeded. The research was recently published in the Journal of Bacteriology.

Erwinia carotovora can cause disease in a wide range of plants, including carrots, tomatoes and onions, but is best known in temperate regions for causing blackleg and soft rot in potatoes. Its success partly lies in its ability to produce enzymes which break down its host's cell walls. The degraded cell walls provide nutrients to the bacterium, and so aid its survival and growth.

The Cambridge researchers discovered that if they inactivated a gene called relA, which helps the bacteria recognise when nutrients are running low, then the bacteria's ability to export enzymes to break down the plant's cell walls is also abolished.

Research leader Dr Martin Welch explains: "Blackleg is a significant economic problem, substantially reducing crop yields.

"We have shown that the production of cell wall degrading enzymes is genetically linked to not only signalling abilities but also to the bacterium's nutritional status. This has important implications for researchers looking for new ways to control the disease. By improving our understanding of how Erwinia carotovora rots the plant, we can reveal additional, possibly novel targets for the eventual development of anti-rot agents. We have also opened up the potential to develop pesticides."

Dr Mike Storey, R&D Director of the British Potato Council, commented in response to the research findings: "Blackleg is one of the key diseases across all sectors of the British potato industry. The findings from the University of Cambridge are important as they could offer novel solutions, both to help store potatoes and to control the disease.

"Soft rots in particular are a concern for many crops going in store this season because of the warm and wet growing conditions. We rely on careful storage management as most varieties of potato have no inbuilt resistance to soft rot and there are no available pesticides."
-end-


Biotechnology and Biological Sciences Research Council

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.