ESF workshop makes major advance in cancer radiotherapy

November 07, 2008

Radical improvements in outcome for many cancer sufferers are in prospect following one of the most significant advances in radiotherapy since x-rays were first used to treat a tumour in 1904. The use of charged particles as an alternative to x-ray or gamma ray radiation can extend the scope of radiotherapy to tumours previously requiring invasive surgery, while speeding up diagnosis and reducing collateral damage to surrounding tissue.

This fast emerging field of charged particle cancer therapy was thrashed out at a recent workshop organised by the European Science Foundation (ESF), which discussed new instruments that will lead to improvements in both diagnosis and treatment. Diagnosis and treatment are closely linked in radiotherapy, since more accurate location of tumour cells in turn enables the radiation dose to be more precisely focused.

"Developments in imaging have allowed improvements in radiation beam placement, and the two areas tend to go together," said Barbara Camanzi, convenor of the ESF workshop, and specialist in radiotherapy instrumentation at the Rutherford Appleton Laboratory Department of Particle Physics near Oxford in the UK. This in turn improves prospects of destroying the tumour while reducing collateral damage to healthy tissue nearby. Such collateral damage causes not just tissue death, but can lead to induction of secondary tumours, which has been a long standing problem for traditional radiotherapy using x rays. Some tissue cells close to the tumour receive enough radiation to trigger mutations in their DNA that can cause them to become malignant, but not enough radiation to kill them. "The fall in collateral radiation deposition in the body ranges from a factor of 2 to 15 depending on the precise treatment indication and body site," noted Bleddyn Jones, an oncologist attending the ESF workshop, from the Gray Institute for Radiation Oncology and Biology in Oxford, UK. "All techniques using external gamma rays and x-rays impart a larger dose to surrounding healthy tissue with long term risks of functional changes and malignant induction."

The improved imaging made possible by use of charged particles also makes it easier to detect tumours when they are small, improving prospects for patients whether or not they actually undergo radiotherapy. "Making an earlier diagnosis of a smaller cancer increases the chance of cure following either particle beam therapy or surgery," said Camanzi.

However, the ESF workshop identified that further significant improvements in instrumentation were required, both for treatment and diagnosis, to exploit the full potential of charged particles for cancer therapy. Further work was also required to adjust dose to minimise the risk of secondary tumour formation caused by the radiation, which remains a risk with use of charged particles. The ESF workshop also addressed the need for improved design of the gantry systems used both for imaging and to deliver the radiation doses in treatment.

The other important issue addressed by the ESF workshop is educating radiotherapy consultants in the new techniques so that they are in a position to determine the best form of treatment for each individual case. Sometimes charged therapy may be the best method, in other cases traditional x-ray therapy, and in yet others surgery or chemotherapy, or combinations of these.

"There is a need to hold more educational and training meetings on particle therapy especially in those European countries that at present have no plans for such facilities," said Camanzi, who noted that a follow up symposium in Oxford had been proposed for 2010.
-end-
The ESF workshop, Advanced Instrumentation for Cancer Diagnosis and Treatment, was held in Oxford, UK, during September 2008.

European Science Foundation

Related Radiotherapy Articles from Brightsurf:

Genomic analysis predicts survival benefit of adjuvant chemotherapy following radiotherapy over radiotherapy alone in low-grade gliomas in NRG Oncology clinical trial
A practice-changing study, NRG Oncology clinical trial NRG-RTOG 9802, has demonstrated, for the first time, a survival benefit of adjuvant chemotherapy following radiotherapy over radiotherapy alone in certain subgroups of patients with high-risk, low-grade glioma (WHO classification: LGG, grade II), a type of brain tumor that originates from glial cells.

Outcomes in radiotherapy-treated patients with cancer during COVID-19
The delivery of radiotherapy in 209 patients with cancer during the COVID-19 outbreak in Wuhan, China, is evaluated in this case series.

Shorter radiotherapy treatment for bowel cancer patients during COVID-19
An international panel of cancer experts has recommended a one-week course of radiotherapy and delaying surgery as the best way to treat patients with bowel cancer during the COVID-19 pandemic.

The pros and cons of radiotherapy: Will it work for you?
Women undergoing radiotherapy for many cancers are more likely than men to be cured, but the side effects are more brutal, according to one of Australia's most experienced radiation oncology medical physicists.

How to keep boron inside cells during radiotherapy: a novel approach to cancer treatment
Boron neutron capture therapy (BNCT) is a technique in which p-boronophenylalanine (BPA) is transferred to cancer cells, and the boron in it undergoes nuclear fission reaction upon irradiation of thermal neutrons, releasing high energy particles that kill the cells.

Prolonged breath-holding could help radiotherapy treatment of cardiac arrhythmias
A technique that enables patients suffering from heart conditions to hold their breath safely for over five minutes could have potential as part of a new treatment for cardiac arrhythmias, say researchers at the University of Birmingham.

Zebrafish 'avatars' can help decide who should receive radiotherapy treatment
To date, there is no method for clearly determining whether radiotherapy will be an effective treatment for individual cancer patients.

One dose of radiotherapy as effective as five doses for cancer in the spine
A single dose of radiotherapy is as 'effective' as five doses for end-of-life cancer patients suffering with painful spinal canal compression, finds a large study conducted by UCL.

Personalized and powerful: UK to lead next-generation radiotherapy research
The UK will be transformed into a global hub for radiotherapy research, pioneering the use of the latest techniques such as FLASH radiotherapy and artificial intelligence, with a new £56 million research network announced by Cancer Research UK today.

Oxygen in hyperbaric chamber provides relief after radiotherapy
Hyperbaric oxygen therapy (HBOT) can relieve self-reported symptoms and side-effects of radiotherapy against cancer in the pelvic region, a study shows.

Read More: Radiotherapy News and Radiotherapy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.