The secrets of tunneling through energy barriers

November 07, 2011

Electrons moving in graphene behave in an unusual way, as demonstrated by 2010 Nobel Prize laureates for physics Andre Geim and Konstantin Novoselov, who performed transport experiments on this one-carbon-atom-thick material. A review article, just published in EPJ B¹, explores the theoretical and experimental results to date of electrons tunneling through energy barriers in graphene.

As good an electrical conductor at room temperature as copper graphene is, it also outperforms all other known materials as a heat conductor. It is both very dense due to its honeycomb lattice structure and almost completely transparent, making it suitable, among other applications, for touch screens and light panels.

What could partly explain graphene's properties is that electrons travelling inside the material behave as if they were massless. Their behavior is described by the so-called massless Dirac equation that is normally used for high-energy particles such as neutrinos nearing the speed of light. However, electrons in graphene move at a constant speed 300 times smaller than that of light.

In this review, P.E. Allain and J.N. Fuchs, both from the Université Paris-Sud, focus on the tunneling effect occurring when Dirac electrons found in graphene are transmitted through different types of energy barriers. Contrary to the laws of classical mechanics, which govern larger scale particles that cannot cross energy barriers, electron tunneling is possible in quantum mechanics - though only under restricted conditions, depending on the width and energy height of the barrier.

However, the Dirac electrons found in graphene can tunnel through energy barriers regardless of their width and energy height; a phenomenon called Klein tunneling, described theoretically for 3D massive Dirac electrons by the Swedish physicist Oskar Klein in 1929. Graphene was the first material in which Klein tunneling was observed experimentally, as massive Dirac electrons required energy barriers too large to be observed.
-end-
References

1. Allain PE, Fuchs JN (2011). Klein tunneling in graphene: optics with massless electrons. European Physical Journal B (EPJ B). DOI 10.1140/epjb/e2011-20351-3

For more information, please visit http://www.epj.org.

Springer

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.