Researchers develop non-invasive technique for predicting patients' response to chemotherapy

November 07, 2012

Researchers have developed a non-invasive way of predicting how much of a cancer-killing drug is absorbed by a tumour. The preliminary study, which will be reported at the 24th EORTC-NCI-AACR [1] Symposium on Molecular Targets and Cancer Therapeutics in Dublin, Ireland, today (Thursday), was conducted in lung cancer patients and it also revealed that less than one per cent of the drug, docetaxel, is absorbed by the tumours [2].

Dr Astrid van der Veldt (MD, PhD), from the VU University Medical Center in Amsterdam, The Netherlands, told the Symposium: "This finding underscores the fact that only a small amount of drug accumulates in tumours and indicates that there is an urgent need for strategies that selectively enhance drug delivery to tumours. For that purpose, the direct effects of other, anti-cancer drugs on metabolism as well as drug delivery to tumours need to be investigated, as other drugs may also affect metabolism and drug delivery to tumours."

Until now, there has been no accurate way of assessing how much of an anti-cancer drug is absorbed by a tumour and, therefore, what effect the drug is having on the tumour, without invasive surgery to extract samples.

Dr van der Veldt and her colleagues used an imaging technique called positron emission tomography (PET) to track very small tracer doses of the anti-cancer drug docetaxel, which had been radiolabeled with the positron emitting radionuclide carbon-11, in the patient. The PET scan was able to follow this tiny [11C]docetaxel dose in the body non-invasively and provide information on how much reached the tumour, the amount absorbed by the tumour and its effect on the tumour (the pharmacokinetics and pharmacodynamics of the drug). By using a microdose of docetaxel in this way, the patients were protected from any docetaxel-induced toxic side-effects that could occur if the docetaxel was administered at therapeutic doses.

Dr van der Veldt said: "A potential problem with this is the fact that the behaviour of [11C]docetaxel in the tumour at tracer doses may be different from its behaviour at therapeutic doses. Therefore, we investigated whether a PET study using tracer doses of [11C]docetaxel could predict tumour uptake of docetaxel at therapeutic doses."

Six lung cancer patients who had not been treated previously with docetaxel underwent two PET scans, one with the tracer dose of docetaxel, and another during a combined infusion of a tracer dose and a therapeutic dose (75mg/m2) of docetaxel. The researchers compared the tumour uptake of both the tracer and therapeutic doses of docetaxel and found that the tracer dose correctly predicted the tumour uptake of the therapeutic dose.

"This study showed that microdosing data from PET scans of [11C]docetaxel could be used to reliably predict tumour uptake of docetaxel during chemotherapy, which was also associated with tumour response to docetaxel therapy. This is important information for us to have when we are treating patients, as it helps us to predict how well the drug is working and whether it might be better to switch to some other, potentially more effective treatment. The findings of this study warrant larger clinical studies investigating the predictive value of initial [11C]docetaxel uptake for tumour response to docetaxel therapy," said Dr van der Veldt. "In addition, the present study provides a framework for investigating the PET microdosing concept for other radiolabeled anti-cancer drugs in patients with other cancers.

"To the best of our knowledge, the present study is the first in which absolute tumour uptake of chemotherapy is measured non-invasively in patients."

Additional analyses revealed that less than one per cent of the therapeutic dose of docetaxel that was infused in the patients was finally taken up by the tumour tissue. This uptake might also be affected by other drugs that are being delivered at the same time. "For example, in a recent study, we have shown that the drug bevacizumab, which inhibits the creation of new blood vessels supplying the tumour, induces a rapid and significant reduction in delivery of [11C]docetaxel to tumours in non-small cell lung cancer patients," said Dr van der Veldt.

She concluded: "Although, at present, [11C]docetaxel PET cannot be used on a large scale because of its complexity and high costs, it is a promising technique for several investigations. [11C]docetaxel PET may be useful to predict response to docetaxel therapy and select patients for docetaxel-containing treatment strategies, thereby contributing to more personalised treatment planning in individual cancer patients. In addition, [11C]docetaxel PET may help to define the optimal design of large clinical trials to investigate the effects of drug scheduling on efficacy in cancer patients."

Professor Stefan Sleijfer, the scientific chair of the EORTC-NCI-AACR Symposium, from Erasmus University Medical Centre (The Netherlands), commented: "This study is interesting because it provides more insight into the amount of drug that reaches the place where it should go: the tumour cell. Because of technical limitations, this is a relatively unexplored field of research, which is of great importance. Eventually, this may lead to better prediction of outcome and novel combinations augmenting the penetration of active anti-tumour agents into the tumours."
-end-
[1] EORTC [European Organisation for Research and Treatment of Cancer, NCI [National Cancer Institute], AACR [American Association for Cancer Research].

[2] Abstract no: 245. Proffered papers, plenary session 6, 15.00 hrs, Thursday 8 November.

[3] The research was funded by the Cancer Center Amsterdam.

ECCO-the European CanCer Organisation

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.