Special camera detects tumors

November 07, 2013

Cancer patients have the highest probability of recovering if tumors are completely removed. However, tiny clusters of cancer cells are often difficult for surgeons to recognize and remove. A camera makes hidden tumors visible during an operation.

Tumor removal surgeries pose a great challenge even to skillful and experienced surgeons. For one thing, tumor margins are blending into healthy tissue and are difficult to differentiate. For another, distributed domains of cancer and pre-malignancies are difficult to recognize. Up to now, doctors depend exclusively upon their trained eyes when excising pieces of tumors. In future, a new special camera system can help visualize during operation even the smallest, easy-to-overlook malignant pieces of tumor and thereby support the surgeons during complicated inter- ventions.

The trick: the camera can display fluorescent molecules that "paint" the cancer tissue. These are injected into the patients blood circulation prior to the operation and selectively attach onto the tumor during their trip through the body. If the corresponding area is then illumimated with a specific wavelength, fluorescence is emitted and the malignant tissue glows green, blue, red, or any other color, depending on the injected dye, while the healthy tissue appears the same. In this way, the surgeon can see clasters of tumors cells that cannot be recognized by the naked eye.

New system reveals several dyes simultaneously

Researchers at the Fraunhofer Project Group for Automation in Medicine and Biotechnology (PAMB), which belongs to the Fraunhofer Institute for Manufacturing Engineering and Auto- mation (IPA), have developed a new surgical aid, a multispectral fluorescence camera system. In the future, this special camera will integrate into various medical imaging systems such as, surgical microscopes and endoscopes, etc. The scientists from Mann- heim, Germany, will make the debute of a prototype of this high-tech system at the Medica Trade Fair in Düsseldorf in the joint Fraunhofer booth (Halle 10, Booth F05) between 20-23 November. The novel aspect about this camera: it can display several fluorescent dyes and the reflectance image simultaneously in real time - systems available until now have not been able to achieve this. The advantage: arteries and delicate nerves that must not be injured during an intervention can likewise be colored with dye. They too can then be detected with the new camera, since they are set apart from their surroundings.

"The visibility of the dye to the camera depends in large part on the selection of the correct set of fluorescence filters. The filter separates the incident excitation wave- lengths from the fluorescing wavelengths so that the diseased tissue is also set apart from its surround- ings, even at very low light intensities," says Nikolas Dimitriadis, a scientist at PAMB. The researchers and their colleague require only one camera and one set of filters for their photographs, which can present up to four dyes at the same time. Software developed in-house analyses and processes the images in seconds and presents it continuously on a monitor during surgery. The information from the fluores- cent image is superposed on the normal color image. "The operator receives significantly more accurate information. Millimeter-sized tumor remnants or metastases that a surgeon would otherwise possibly overlook are recognizable in detail on the monitor. Patients operated under fluorescent light have improved chances of survival," says Dr. Nikolas Dimitriadis, head of the Biomedical Optics Group at PAMB.

In order to be able to employ the multispectral fluorescence camera system as adapt- ably as possible, it can be converted to other combinations of dyes. "One preparation that is already available to make tumors visible is 5-amino levulinic acid (5-ALA). Physicians employ this especially for glioblastomas - one of the most frequent malig- nant brain tumors in adults," explains Dimitriadis. 5-ALA leads to an accumulation of a red dye in the tumor and can likewise be detected with the camera. The multispectral fluorescence imaging system should have passed testing for use with humans as soon as next year. The first clinical tests with patients suffering from glioblastomas are planned for 2014.
-end-


Fraunhofer-Gesellschaft

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.