Nav: Home

Major advance in solar cells made from cheap, easy-to-use perovskite

November 07, 2016

Solar cells made from an inexpensive and increasingly popular material called perovskite can more efficiently turn sunlight into electricity using a new technique to sandwich two types of perovskite into a single photovoltaic cell.

Perovskite solar cells are made of a mix of organic molecules and inorganic elements that together capture light and convert it into electricity, just like today's more common silicon-based solar cells. Perovskite photovoltaic devices, however, can be made more easily and cheaply than silicon and on a flexible rather than rigid substrate. The first perovskite solar cells could go on the market next year, and some have been reported to capture 20 percent of the sun's energy.

In a paper appearing online today in advance of publication in the journal Nature Materials, University of California, Berkeley, and Lawrence Berkeley National Laboratory scientists report a new design that already achieves an average steady-state efficiency of 18.4 percent, with a high of 21.7 percent and a peak efficiency of 26 percent.

"We have set the record now for different parameters of perovskite solar cells, including the efficiency," said senior author Alex Zettl, a UC Berkeley professor of physics, senior faculty member at Berkeley Lab and member of the Kavli Energy Nanosciences Institute. "The efficiency is higher than any other perovskite cell - 21.7 percent - which is a phenomenal number, considering we are at the beginning of optimizing this."

"This has a great potential to be the cheapest photovoltaic on the market, plugging into any home solar system," said Onur Ergen, the lead author of the paper and a UC Berkeley physics graduate student.

The efficiency is also better than the 10-20 percent efficiency of polycrystalline silicon solar cells used to power most electronic devices and homes. Even the purest silicon solar cells, which are extremely expensive to produce, topped out at about 25 percent efficiency more than a decade ago.

The achievement comes thanks to a new way to combine two perovskite solar cell materials - each tuned to absorb a different wavelength or color of sunlight - into one "graded bandgap" solar cell that absorbs nearly the entire spectrum of visible light. Previous attempts to merge two perovskite materials have failed because the materials degrade one another's electronic performance.

"This is realizing a graded bandgap solar cell in a relatively easy-to-control and easy-to-manipulate system," Zettl said. "The nice thing about this is that it combines two very valuable features - the graded bandgap, a known approach, with perovskite, a relatively new but known material with surprisingly high efficiencies - to get the best of both worlds."

Full-spectrum solar cells

Materials like silicon and perovskite are semiconductors, which means they conduct electricity only if the electrons can absorb enough energy - from a photon of light, for example - to kick them over a forbidden energy gap or bandgap. These materials preferentially absorb light at specific energies or wavelengths - the bandgap energy - but inefficiently at other wavelengths.

"In this case, we are swiping the entire solar spectrum from infrared through the entire visible spectrum," Ergen said. "Our theoretical efficiency calculations should be much, much higher and easier to reach than for single-bandgap solar cells because we can maximize coverage of the solar spectrum."

The key to mating the two materials into a tandem solar cell is a single-atom thick layer of hexagonal boron nitride, which looks like a layer of chicken wire separating the perovskite layers from one other. In this case, the perovskite materials are made of the organic molecules methyl and ammonia, but one contains the metals tin and iodine, while the other contains lead and iodine doped with bromine. The former is tuned to preferentially absorb light with an energy of 1 electron volt (eV) - infrared, or heat energy - while the latter absorbs photons of energy 2 eV, or an amber color.

The monolayer of boron nitride allows the two perovskite materials to work together and make electricity from light across the whole range of colors between 1 and 2 eV.

The perovskite/boron nitride sandwich is placed atop a lightweight aerogel of graphene that promotes the growth of finer-grained perovskite crystals, serves as a moisture barrier and helps stabilize charge transport though the solar cell, Zettl said. Moisture makes perovskite fall apart.

The whole thing is capped at the bottom with a gold electrode and at the top by a gallium nitride layer that collects the electrons that are generated within the cell. The active layer of the thin-film solar cell is about 400 nanometers thick.

"Our architecture is a bit like building a quality automobile roadway," Zettl said. "The graphene aerogel acts like the firm, crushed rock bottom layer or foundation, the two perovskite layers are like finer gravel and sand layers deposited on top of that, with the hexagonal boron nitride layer acting like a thin-sheet membrane between the gravel and sand that keeps the sand from diffusing into or mixing too much with the finer gravel. The gallium nitride layer serves as the top asphalt layer."

It is possible to add even more layers of perovskite separated by hexagonal boron nitride, though this may not be necessary, given the broad-spectrum efficiency they've already obtained, the researchers said.

"People have had this idea of easy-to-make, roll-to-roll photovoltaics, where you pull plastic off a roll, spray on the solar material, and roll it back up," Zettl said. "With this new material, we are in the regime of roll-to-roll mass production; it's really almost like spray painting."
-end-
Co-authors are S. Matt Gilbert, Thang Pham, Sally Turner Mark and Tian Zhi Tan of UC Berkeley and Marcus Worsley of Lawrence Livermore National Laboratory, who produced the graphene aerogel.

The work was supported by the U.S. Department of Energy, the National Science Foundation (1542741) and the Office of Naval Research.

University of California - Berkeley

Related Solar Cell Articles:

Simulations pinpoint atomic-level defects in solar cell nanostructures
Heterogeneous nanostructured materials are widely used in various optoelectronic devices, including solar cells.
Light can improve perovskite solar cell performance
Publishing in Nature, EPFL scientists show how light affects perovskite film formation in solar cells, which is a critical factor in using them for cost-effective and energy-efficient photovoltaics.
Solar cell design with over 50 percent energy-conversion efficiency
Solar cells convert the sun's energy into electricity by converting photons into electrons.
Scientists lay foundations for new type of solar cell
An interdisciplinary team of researchers has laid the foundations for an entirely new type of photovoltaic cell.
Stability challenge in perovskite solar cell technology
New research reveals intrinsic instability issues of iodine-containing perovskite solar cells.
New way to make low-cost solar cell technology
Researchers at the Australian National University have found a new way to fabricate high efficiency semi-transparent perovskite solar cells in a breakthrough that could lead to more efficient and cheaper solar electricity.
New perovskite solar cell design could outperform existing commercial technologies
Stanford and Oxford scientists have created new perovskite solar cells that that could rival and even outperform conventional cells made of silicon.
New advances in solar cell technology
Bringing the dream of utilizing cost-effective renewable energy resources into reality: new, more effective solar cells can be make through novel perovskite research.
Solar cell is more efficient, costs less than its counterparts
A team of researchers from MIT and the Masdar Institute of Science and Technology has developed a new solar cell that combines two different layers of sunlight-absorbing material to harvest a broader range of the sun's energy and that costs less than its counterparts.
Flipping crystals improves solar-cell performance
In a step that could bring perovskite crystals closer to use in the burgeoning solar power industry, researchers from Los Alamos National Laboratory, Northwestern University and Rice University have tweaked their crystal production method and developed a new type of two-dimensional layered perovskite with outstanding stability and more than triple the material's previous power conversion efficiency.

Related Solar Cell Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".