Nav: Home

The birth of massive stars is accompanied by strong luminosity bursts

November 07, 2016

The birth of massive stars is still a mystery to us, because these stars are embedded in an extremely dense medium of gas and dust, says Rolf Kuiper, the leader of the Emmy Noether Research Group for Massive Star Formation, funded by the German Research Foundation (DFG). "This opaque envelope makes it difficult to directly observe the birth process even with modern telescopes. In other words, we see the cradle in which these stars are born, but we can't detect the stars themselves." Therefore, the researchers modeled the birth process within a numerical simulation. For this ambitious, computationally expensive study they made use of high-performance computers within the bwHPC initiative of the state of Baden-Württemberg.

The simulation starts with a cloud of gas and dust, which collapses under its own gravity and eventually forms a so-called accretion disk around the hot young star. The material in such a disk rotates around the central star and slowly transports gas and dust towards it. For the first time, the resolution of these simulations was sufficient to infer the formation of high-density clumps within the gravitationally unstable disk. Once formed, these clumps start to migrate through the disk and finally sink into the central star. "Like throwing logs into a fireplace, these episodes of clump consumption produce violent luminosity outbursts outshining the collective effect of one hundred thousand Suns", says Eduard Vorobyov.

A similar process of episodical luminosity bursts was already known with respect to the formation of the first stars in the Universe and for low-mass stars like our Sun. The new investigation suggests now that the formation of stars of any kind and epoch are controlled by the same universal processes: "It is amazing to see these similarities, as if star formation on all scales and epochs is controlled by a common DNA forged in the early Universe", says Dominique Meyer, the first author of the study and post-doc in the Emmy Noether Group. The clumps, explains Wilhelm Kley, are also excellent candidates for the formation of Solar-type companions to massive stars: "These companions will also influence their future evolution."

The results will help to develop new observing strategies for detecting these luminosity outbursts - and even for directly imaging the high-density clumps in accretion disks around very young massive stars. This will be a task for modern observing facilities such as the Atacama Large Millimeter Array (ALMA) of the European Southern Observatory (ESO) or the future European Extremely Large Telescope (E-ELT).
-end-
Publication in "Monthly Notices of the Royal Astronomical Society" D. M.-A. Meyer, E. I. Vorobyov, R. Kuiper and W. Kley: On the existence of accretion-driven bursts in massive star formation. Monthly Notices of the Royal Astronomical Society, DOI: 10.1093/mnrasl/slw187

University of Vienna

Related Star Formation Articles:

Star's birth may have triggered another star birth, astronomers say
Radio images give new evidence that a jet of material from one young star may have triggered the gas collapse that started another young star.
Organic compound found in early stages of star formation
Scientists seeking to understand the origins of life have found a new organic compound in the material from which a star like the Sun is forming.
Speeding star gives new clues to breakup of multi-star system
Three stars have been discovered that now hold the record as the youngest-known examples of a super-fast star category.
Astronomers find unexpected, dust-obscured star formation in distant galaxy
Pushing the limits of the largest single-aperture millimeter telescope in the world, and coupling it with gravitational lensing, University of Massachusetts Amherst astronomer Alexandra Pope and colleagues report that they have detected a surprising rate of star formation, four times higher than previously detected, in a dust-obscured galaxy behind a Frontier Fields cluster.
Hubble discovery of runaway star yields clues to breakup of multiple-star system
A gravitational tussle, ended with a multi-star system breaking apart and at least three stars being ejected in different directions.
Cosmic environments and their influence in star formation
In a joint collaboration between the California Institute of Technology and the University of California, Riverside, astronomers have performed an extensive study of the properties of galaxies within filaments formed at different times during the age of the universe.
Investigating star formation is UMass Amherst researcher's mission
University of Massachusetts Amherst astrophysicist Stella Offner, who has received a five-year, $429,000 faculty early career development (CAREER) grant from National Science Foundation (NSF), plans to use it not only to study how stars are born, but also to develop interactive online astronomy 'tours' to enhance K-12 science education in local schools.
Black-hole-powered jets forge fuel for star formation
Astronomers using ALMA have discovered a surprising connection between a supermassive black hole and the galaxy where it resides.
Rings around young star suggest planet formation in progress
Rice University astronomers and their international colleagues have for the first time mapped gases in three dark rings around a distant star with the powerful ALMA radio telescope.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.

Related Star Formation Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...