New quantum materials offer novel route to 3-D electronic devices

November 07, 2017

Researchers have shown how the principles of general relativity open the door to novel electronic applications such as a three-dimensional electron lens and electronic invisibility devices. In a new study funded by the Academy of Finland, Aalto University researchers Alex Westström and Teemu Ojanen propose a method to go beyond special relativity and simulate Einstein's theory of general relativity in inhomogeneous Weyl semimetals. The theory of Weyl metamaterials combines ideas from solid-state physics, particle physics and cosmology and points a way to fabricate metallic designer materials where charge carriers move like particles in curved space-time.

The researchers propose Weyl metamaterials, a generalisation of Weyl semimetals, that enable new types of electronic devices through geometry engineering.

"The systems we introduced offer a route to make the charge carriers move as if they were living in a curved geometry, providing a tabletop laboratory for simulating curved-space quantum physics and certain cosmological phenomena," Alex Westström explains.

Weyl semimetals are an example of recently discovered quantum materials that have received a lot of attention. Charge carriers in these materials behave as if they were massless particles moving at the speed of light.

"We discovered that Weyl metamaterials may serve as a platform for exotic electronic devices such as the 3D electron lens, where the trajectories of charge carriers are focused much like beams of light in an optical lens," Teemu Ojanen says.

The electric conduction in Weyl semimetals reflects the physics of Einstein's special theory of relativity. Nevertheless, special relativity also assumes an absence of gravity, which Einstein formulated as a geometry of space-time.

The theory of Weyl metamaterials also paves the way for fundamentally new electronics applications, for instance, the development of electronic invisibility devices. The key idea behind the potential applications is an artificially created curved geometry, which bends the motion of charge carriers in a controlled way.

"In optics, it's been known for centuries that light always chooses the quickest trajectory. In curved geometry, the quickest path doesn't look like a straight line for those watching from outside. The functionality of optical invisibility devices, where the beams of light bypass a hidden object, is in fact based on the application of curved-space geometry. It would be a breakthrough in fundamental research to achieve a similar functionality in electronic systems," Ojanen adds.
-end-
The research results were published in Physical Review X. The study was performed at Aalto University's Department of Applied Physics, in the group Theory of Quantum Matter.

Article:

Alex Westström and Teemu Ojanen: Designer curved-space geometry for relativistic fermions in Weyl metamaterials Physical Review X 7 2017, https://journals.aps.org/prx/pdf/10.1103/PhysRevX.7.041026, DOI: 10.1103/PhysRevX.7.041026

Inquiries

Academy of Finland Communications
Leena Vähäkylä, Communications Specialist
tel. +358 295 335 068
firstname.lastname(at)aka.fi

Picture: a) By local manipulation of material parameters, it is possible to tune the properties of charge carriers in Weyl semimetals; b) With suitable local manipulation of material parameters, one can tailor the carrier motion and design novel electronic devices such as the electron lens, which focuses the incoming carriers.

Academy of Finland

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.