Nav: Home

Fine water particle sprays improve facial skin moisture

November 07, 2018

In aSkin Research & Technology study, spraying fine water particles onto the facial skin of adult women in winter, when skin is dry, improved skin hydration and softening. In addition, water retention remained constant at 360 minutes after spraying.

The benefits occurred because the diameter of the sprayed fine water particles was smaller than the intercellular spaces in the skin, and the particles were non-charged. Typical steam and mist humidifiers generate larger water particles and increase indoor humidity that can promote mold growth.

The findings indicate that sprays of non-charged fine water particles may help moisten skin in low humidity environments.
-end-


Wiley

Related Particles Articles:

Sound waves direct particles to self-assemble, self-heal
Berkeley Lab scientists have demonstrated how floating particles will assemble and synchronize in response to acoustic waves.
'Immunoswitch' particles may be key to more-effective cancer immunotherapy
Scientists at Johns Hopkins have created a nanoparticle that carries two different antibodies capable of simultaneously switching off cancer cells' defensive properties while switching on a robust anticancer immune response in mice.
Heavy particles get caught up in the flow
By teasing out signatures of particles that decay just tenths of a millimeter from the center of a trillion-degree fireball that mimics the early universe, nuclear physicists smashing atoms at the Relativistic Heavy Ion Collider (RHIC) are revealing new details about the fundamental particles that make up our world.
Finding the 'ghost particles' might be more challenging than what we thought
Results from the NEOS experiment on sterile neutrinos differ partly from the theoretical expectations.
'Ghost particles' could improve understanding the universe
New measurements of neutrino oscillations, observed at the IceCube Neutrino Observatory at the South Pole, have shed light on outstanding questions regarding fundamental properties of neutrinos.
New microscope chemically identifies micron-sized particles
A team from MIT Lincoln Labs have developed a microscope that can chemically identify individual micron-sized particles.
Calculating 1 billion plasma particles in a supercomputer
At the National Institutes of Natural Sciences National Institute for Fusion Science (NIFS) a research group using the NIFS 'Plasma Simulator' supercomputer succeeded for the first time in the world in calculating the movements of one billion plasma particles and the electrical field constructed by those particles.
Quantum particles form droplets
In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: the atoms form a new type of quantum liquid or quantum droplet state.
Clarifying the plasma oscillation by high-energy particles
The National Institute for Fusion Science has developed a new code that can simulate the movement of plasma and, simultaneously, the movement of particles circulating at high speeds.
An Archimedes' screw for groups of quantum particles
A scheme proposed by researchers from the Centre for Quantum Technologies at the National University of Singapore and their international collaborators that uses 'topological pumping' could move information about inside future quantum computers.

Related Particles Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".