Nav: Home

Will tarloxotinib finally break the HER2 barrier in lung cancer?

November 07, 2018

The HER2 gene is a well-known driver of breast cancer, where changes in this gene are found in about 1-in-5 cases of the disease. HER2 also contributes to about 3 percent of lung cancers, representing about 6,500 patients per year. But while drugs like trastuzumab and lapatinib have proven effective in silencing the action of HER2 in breast cancer, there are currently no approved HER2-targeted therapies for the treatment of lung cancer.

Now, a University of Colorado Cancer Center study presented at the 30th annual EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics shows the promise of an innovative new strategy against HER2-driven lung cancers (with EGFR involvement, which is also a well-known driver of lung cancer). Tarloxotinib, a potent HER2/EGFR inhibitor, is unique in that the drug only becomes active in low-oxygen conditions, such as those commonly found in tumor tissue. By pairing a potent HER2/EGFR inhibitor with a targeting mechanism specific to tumors, researchers show that tarloxotinib is far more active against lung cancer cell lines than even the most successful existing HER2/EGFR inhibitors, with minimal effect on surrounding, healthy tissues.

"We are very excited about this drug. When it's near healthy cells, it's inactive; when it's near tumor cells, it's very active. This could provide a new therapeutic approach for patients with HER2 lung cancer," says Robert C. Doebele, MD, PhD, director of the CU Cancer Center Thoracic Oncology Research Initiative. Dr. Doebele is a co-founder of Rain Therapeutics Inc., a clinical stage biotechnology company developing tarloxotinib as its lead drug candidate.

Tarloxotinib is one in a class of anti-cancer agents known as "prodrugs," in which inactive molecules are transformed by specific conditions inside the body into active molecules. In the case of tarloxotinib, oxygen molecules scavenge electrons from the prodrug to keep it inactive. In the absence of oxygen, tarloxotinib fractures into its active form.

The current study shows that in healthy, high-oxygen tissues, it takes about an hour for the body to clear half of any administered molecules of tarloxotinib; in low-oxygen tumor tissues, the same clearance takes about 80 hours. This makes tarloxotinib about 50 times more active in low-oxygen conditions than it is in normal-oxygen conditions. And low-oxygen conditions, aka "hypoxia," are a hallmark of cancer, in which the growth of tumor tissue often outpaces the growth of blood vessels needed to supply the tumor with oxygen.

"The problem is that the concentration of HER2/EGFR inhibitor needed to affect HER2/EGFR lung cancer is so high that these drugs have come with too many side effects to be clinically useful. We hope that our approach with this prodrug will solve that problem, delivering the HER2/EGFR inhibitor where it's needed without compromising function in healthy tissues," says Adriana Estrada-Bernal, PhD, the study's first author.
-end-
At noon (GMT) on November 13, the group will present data describing the therapeutic effect of tarloxotinib on mouse models of lung cancer. Collaborators at the University of Auckland will present the following additional data:

Presentation Title: The hypoxia-activated EGFR/HER2 inhibitor Tarloxotinib is activated by the plasma membrane reductase STEAP4
Date: November 16, 2018, 10:00 a.m. GMT

Presentation Title: Targeting tumour hypoxia with tarloxotinib improves the therapeutic efficacy of checkpoint blockade
Date: November 16, 2018, 10:00 a.m. GMT

University of Colorado Anschutz Medical Campus

Related Breast Cancer Articles:

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
More Breast Cancer News and Breast Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...