Nav: Home

Codebreaker Turing's theory explains how shark scales are patterned

November 07, 2018

A system proposed by world war two codebreaker Alan Turing more than 60 years ago can explain the patterning of tooth-like scales possessed by sharks, according to new research.

Scientists from the University of Sheffield's Department of Animal and Plant Sciences found that Turing's reaction-diffusion theory - widely accepted as the patterning method in mouse hair and chicken feathers - also applies to shark scales.

The findings can explain how the pattern of shark scales has evolved to reduce drag whilst swimming, thereby saving energy during movement. Scientists believe studying the patterning could help to design new shark-inspired materials to improve energy and transport efficiency.

Turing, forefather of the computer, came up with the reaction-diffusion system which was published in 1952, two years before his death. His equations describe how molecular signals can interact to form complex patterns.

In the paper, published today (7 November 2018) in the journal Science Advances, researchers compared the patterning of shark scales to that of chicken feathers.

They found that the same core genes underlying feather patterning also underlie the development of shark scales and suggest these genes may be involved in the patterning of other diverse vertebrate skin structures, such as spines and teeth.

Dr Gareth Fraser, formerly of the University of Sheffield and now at the University of Florida, said: "We started looking at chicks and how they develop their feathers. We found these very nice lines of gene expression that pattern where these spots appear that eventually grow into feathers. We thought maybe the shark does a similar thing, and we found two rows on the dorsal surface, which start the whole process.

"We teamed up with a mathematician to figure out what the pattern is and whether we can model it. We found that shark skin denticles are precisely patterned through a set of equations that Alan Turing -- the mathematician, computer scientist and the code breaker -- came up with.

"These equations describe how certain chemicals interact during animal development and we found that these equations explain the patterning of these units."

Researchers also demonstrated how tweaking the inputs of Turing's system can result in diverse scale patterns comparable to those seen in shark and ray species alive today.

They suggest that natural variations to Turing's system may have enabled the evolution of different traits within these animals, including the provision of drag reduction and defensive armour.

Rory Cooper, PhD student at the University of Sheffield, said: "Sharks belong to an ancient vertebrate group, long separated from most other jawed vertebrates. Studying their development gives us an idea of what skin structures may have looked like early in vertebrate evolution.

"We wanted to learn about the developmental processes that control how these diverse structures are patterned, and therefore the processes which facilitate their various functions."

Scientists used a combination of techniques including reaction-diffusion modelling to create a simulation based on Turing's equations, to demonstrate that his system can explain shark scale patterning, when the parameters are tuned appropriately.

Mr Cooper added: "Scientists and engineers have been trying to create shark-skin inspired materials to reduce drag and increase efficiency during locomotion, of both people and vehicles, for many years.

"Our findings help us to understand how shark scales are patterned, which is essential for enabling their function in drag reduction.

Therefore, this research helps us to understand how these drag reductive properties first arose in sharks, and how they change between different species."

Patterning is one important aspect that contributes to achieving drag reduction in certain shark species. Another is the shape of individual scales. Researchers now want to examine the developmental processes which underlie the variation of shape both within and between different shark species.

"Understanding how both these factors contribute towards drag reduction will hopefully lead towards the production of improved, widely applicable shark-inspired materials capable of reducing drag and saving energy," added Mr Cooper.
-end-
Notes to editors:

Media contact: Amy Huxtable, Media Relations Officer, University of Sheffield, 0114 222 9859, a.l.huxtable@sheffield.ac.uk

The University of Sheffield

With almost 29,000 of the brightest students from over 140 countries, learning alongside over 1,200 of the best academics from across the globe, the University of Sheffield is one of the world's leading universities.

A member of the UK's prestigious Russell Group of leading research-led institutions, Sheffield offers world-class teaching and research excellence across a wide range of disciplines.

Unified by the power of discovery and understanding, staff and students at the university are committed to finding new ways to transform the world we live in.

Sheffield is the only university to feature in The Sunday Times 100 Best Not-For-Profit Organisations to Work For 2018 and for the last eight years has been ranked in the top five UK universities for Student Satisfaction by Times Higher Education.

Sheffield has six Nobel Prize winners among former staff and students and its alumni go on to hold positions of great responsibility and influence all over the world, making significant contributions in their chosen fields.

Global research partners and clients include Boeing, Rolls-Royce, Unilever, AstraZeneca, Glaxo SmithKline, Siemens and Airbus, as well as many UK and overseas government agencies and charitable foundations.

University of Sheffield

Related Sharks Articles:

The private lives of sharks
White sharks are top predators in the marine environment, but unlike their terrestrial counterparts, very little is known about their predatory activity underwater, with current knowledge limited to surface predation events.
Basking sharks exhibit different diving behavior depending on the season
Tracking the world's second-largest shark species has revealed that it moves to different depths depending on the time of year.
These sharks use unique molecules to glow green
In the depths of the sea, certain shark species transform the ocean's blue light into a bright green color that only other sharks can see -- but how they biofluoresce has previously been unclear.
Blue sharks use eddies for fast track to food
Blue sharks use large, swirling ocean currents, known as eddies, to fast-track their way down to feed in the ocean twilight zone.
Hundreds of sharks and rays tangled in plastic
Hundreds of sharks and rays have become tangled in plastic waste in the world's oceans, new research shows.
More Sharks News and Sharks Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...