Nav: Home

The teeth of Changchunsaurus: Rare insight into ornithopod dinosaur tooth evolution

November 07, 2018

The teeth of Changchunsaurus parvus, a small herbivorous dinosaur from the Cretaceous of China, represent an important and poorly-known stage in the evolution of ornithopod dentition, according to a study released November 7, 2018 in the open-access journal PLOS ONE by Jun Chen of Jilin University in China and colleagues.

Ornithischian ("bird-hipped") dinosaurs developed an incredible diversity of teeth, including the famously complex dental batteries of derived ornithopods, but little is known about how these intricate arrangements arose from the simple tooth arrangements of early dinosaurs. Changchunsaurus parvus belongs to an early branch at or near the origins of the ornithopods, and thus may provideinsight into the ancestral state of ornithopod tooth development. In this study, Chen and colleagues took thin sections from five jaw bones of Changchunsaurus to investigate tooth composition as well as how the teeth are maintained throughout the life of the animal using histological techniques.

Among the notable features of Changchunsaurus dentition is a unique method of tooth replacement that allowed it to recycle teeth without disrupting the continuous shearing surface formed by its tooth rows. The authors also found that the teeth feature wavy enamel, a tissue type formerly thought to have evolved only in more derived ornithopods. The authors suspect these features may have arisen early on as this group of dinosaurs became specialized for herbivory.

Features of the jaws and teeth are often used to assess dinosaur phylogeny. In addition to investigating the evolution of ornithopod dentition, this study also identifies new dental traits that might help sort out ornithischian relationships in future analyses. But the authors note that this is only the first in-depth study at a dinosaur near the base of the ornithopod family tree, and that more studies on more dinosaurs will be needed to fill in the full picture of this group's evolution.

Professor Chen Jun summarizes: "These tissue-level details of the teeth of Changchunsaurus tell us that their teeth were well-adapted to their abrasive, plant-based diets. Most surprisingly, the wavy enamel described here, presumably to make it more resistant to wear, was previously thought to be exclusive to their giant descendants, the duckbilled dinosaurs."
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS ONE: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205206

Citation: Chen J, LeBlanc ARH, Jin L, Huang T, Reisz RR (2018) Tooth development, histology, and enamel microstructure in Changchunsaurus parvus: Implications for dental evolution in ornithopod dinosaurs. PLoS ONE 13(11): e0205206. https://doi.org/10.1371/journal.pone.0205206

Funding: We thank the Chinese National Infrastructure of Mineral Rock and Fossil Specimen Resources (YK 201202-7) for support of specimen collection. A. R. H. LeBlanc is supported by an Izaak Walton Killam Postdoctoral Fellowship from the Killam Trustees. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".