Nav: Home

Quantitative 3D analysis of bone tools sheds light on ancient manufacture and use

November 07, 2018

Quantitative three-dimensional analysis of bone wear patterns can provide insight into the manufacture and use of early human tools, according to a study by Naomi Martisius of the University of California at Davis and colleagues, published November 7 in the open-access journal PLOS ONE.

Humans have been using bone tools for at least 2 million years, and by approximately 100 thousand years ago, were manufacturing them with formal processes such as grinding and scraping. Ancient bone tools carry marks of their manufacture and use, which can provide information about the group of people that made the tools and the specific uses to which tools were put. Microscopy has been used to study these marks, but the study of use-wear on bone tools requires a comparative body of quantitative examples of wear over time and contact with different materials, to ensure that these studies are replicable. In the current study, the authors sought to determine the basics of use-wear formation over time by taking incremental molds of bone specimens subjected to a controlled, mechanical experiment.

The authors initially shaped bone with sandstone or flint, or left it unshaped, and then used it to work fresh skin, leather, or bark, all while taking sequential surface scans using confocal microscopy, to generate three-dimensional data for a quantitative Bayesian analysis. While individual samples of bone varied in both texture and structure, they found that duration of use was the largest and most unequivocal determinant affecting the surface of the bone. Fresh skin was the most abrasive of the three materials, and the degree of wear correlated with duration of use for working skin.

Further refinement of the specific methodological techniques may be needed to fully investigate correlations that link tool shaping and target material to observed wear patterns. However, the study provides a proof of principle for application of quantitative measures to bone wear analysis. The novel technique provides a possible alternative to current methods of bone wear analysis, which are largely qualitative and dependent on expert interpretation.

Martisius adds: "If we want to understand how ancient humans used bone tools, we need to understand what the traces left on the tools mean. We tested manufacturing and use variables over time using a quantitative method for looking at these traces, and by extension, at human behavior"
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS ONE: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206078

Citation: Martisius NL, Sidéra I, Grote MN, Steele TE, McPherron SP, Schulz-Kornas E (2018) Time wears on: Assessing how bone wears using 3D surface texture analysis. PLoS ONE 13(11): e0206078. https://doi.org/10.1371/journal.pone.0206078

Funding: This research was primarily supported by NSF-DDRI (Award ID: 1550161), NSF-GRFP and NSF-GROW (Award ID: 1650042) (http://www.nsf.gov), Wenner-Gren Foundation (Gr. 9214.) (http://www.wennergren.org), Chateaubriand Fellowship (http://www.chateaubriand-fellowship.org) funding to NLM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Equipment and facilities provided by the Préhistoire et Technologie UMR 7055 and the Maison Archéologie et Ethnologie, René-Ginouvès, the Department of Human Evolution at the Max Planck Institute for Evolutionary Anthropology, the Max Planck Weizmann Center for Integrative Archaeology and Anthropology, and the Department of Anthropology, University of California, Davis.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Microscopy Articles:

Elusive atomic motion captured by electron microscopy
The movement of atoms through a material can cause problems under certain circumstances.
Next-generation microscopy
A novel microscopy method allows unprecedented insights into the spatial organization and direct interactions of immune cells within blood and liquid multi-lineage tissues.
Chip-based nanoscopy: Microscopy in HD quality
Physicists at Bielefeld University and the Arctic University of Norway in Tromsø have developed a photonic chip that makes it possible to carry out super-resolution light microscopy, also called 'nanoscopy,' with conventional microscopes.
New microscopy method breaks color barrier of optical imaging
Researchers at Columbia University have made a significant step toward breaking the so-called 'color barrier' of light microscopy for biological systems, allowing for much more comprehensive, system-wide labeling and imaging of a greater number of biomolecules in living cells and tissues than is currently attainable.
Cryo-electron microscopy achieves unprecedented resolution using new computational methods
Cryo-electron microscopy (cryo-EM)--which enables the visualization of viruses, proteins, and other biological structures at the molecular level--is a critical tool used to advance biochemical knowledge.
A fine-tuned microscopy technique offers breakthrough imaging of melanoma
Researchers have recently refined a classic Raman-based technique and succeeded in imaging the two dominant melanin molecules -- a breakthrough that could lead to new understandings and, critically, early detection of melanoma
Background suppression for super-resolution light microscopy
Researchers of Karlsruhe Institute of Technology have developed a new fluorescence microscopy method: STEDD (Stimulation Emission Double Depletion) nanoscopy produces images of highest resolution with suppressed background.
Overcoming the limitations of optical microscopy
A research group led by Professor Dr. Benjamin Judkewitz at Charité -- Universitätsmedizin Berlin is planning to overcome the limitations of optical microscopy and produce images of deeper tissue layers.
Peptides as tags in fluorescence microscopy
Advance in biomedical imaging: The Biocenter of the University of Würzburg in close collaboration with the University of Copenhagen has developed an alternative approach to fluorescent tagging of proteins.
First multicolor electron microscopy images revealed
The best microscope we have for peering inside of a cell can now produce color images.

Related Microscopy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".