Nav: Home

Self-cannibalizing mitochondria may set the stage for ALS development

November 07, 2019

CHICAGO --- Northwestern Medicine scientists have discovered a new phenomenon in the brain that could explain the development of early stages of neurodegeneration that is seen in diseases such as ALS, which affects voluntary muscle movement such as walking and talking. 

The discovery was so novel, the scientists needed to coin a new term to describe it: mitoautophagy, a collection of self-destructive mitochondria in diseased upper motor neurons of the brain that begin to disintegrate from within at a very early age. Upper motor neurons in the brain are responsible for initiating muscle movement and relaxation and are one of the first to break down in neurodegenerative diseases.

The study will be published on November 7 in the journal Frontiers in Cellular Neuroscience.

The phenomenon is observed mainly in one of the most common pathologies observed in neurodegenerative diseases, TDP-43 pathology, which is seen in more than 90% of ALS cases. When a pathology is present in the body, it indicates that something is wrong or functioning abnormally.

"I think we have found the culprit that primes neurons to become vulnerable to future degeneration: suicidal mitochondria," said senior study author Hande Ozdinler, associate professor of neurology at Northwestern University Feinberg School of Medicine. "The mitochondria basically eat themselves up very early in the disease. This occurs selectively in the neurons that will soon degenerate in patient's brains."

"This type of degeneration begins much earlier than previously thought," said study lead author Mukesh Gautam, the A Long Swim (ALS) Ellen Blakeman fellow at Northwestern.

Using a process called immuno-coupled electron microscopy, the scientists investigated the cellular events that go wrong inside the neurons that become vulnerable to disease. After analyzing more than 200 neurons, they observed the self-destruction of mitochondria only in the diseased neurons, and especially within the context of TDP-43 pathology.  

Mitochondria are powerhouses of the cell that create and maintain energy in the cells. In the diseased upper motor neurons, mitochondria self-destruct first by elongating, then forming a ring-like structure, until they finally disintegrate from the inside out. 

It is a type of degeneration never been seen before, and it is different from previously described stages of mitochondrial degeneration. 

The study analyzed mitochondria in the upper motor neurons of three different mouse models of ALS at only 15 days old - equivalent to a toddler in humans. While the study was in mice, Ozdinler and her team showed many times before that the upper neurons even in different species are almost identical at a cellular level, especially within the context of TDP-43 pathology. 

These self-destructive mitochondria could become a future target for drug therapies to treat ALS and other neurodegenerative diseases in which a person's movement is affected, Ozdinler said. They are currently working with drug companies to see if drugs used for human patients with mitochondrial disease could in fact improve the health of diseased motor neurons.

"Many of the drugs currently on the market that target the health and the integrity of mitochondria may well be repurposed and considered for neurodegenerative diseases in the future," Ozdinler said. "Maybe we don't need to reinvent the wheel to cure ALS and other neurodegenerative diseases.

"To overcome neurodegeneration, we need to improve the health and the stability of mitochondria. If we improve the health of the mitochondria early, we may even eliminate protein aggregate formation, a pathology broadly observed in many diseases." 
-end-
Edward Xie and Nuran Kocak, both from Northwestern, are co-authors on the paper. 

The research was supported by the Les Turner ALS Foundation and the National Institutes of Health.

Northwestern University

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.