Nav: Home

NUS engineers invent smartphone device that detects harmful algae in 15 minutes

November 07, 2019

A team of engineers from the National University of Singapore (NUS) has developed a highly sensitive system that uses a smartphone to rapidly detect the presence of toxin-producing algae in water within 15 minutes. This invention can generate test results on-site, and findings can be reported in real-time using the smartphone's wireless communications capabilities.

This technological breakthrough could play a big role in preventing the spread of harmful microorganisms in aquatic environments, which could threaten global public health and cause environmental problems.

The NUS team, led by Assistant Professor Sungwoo Bae from the Department of Civil and Environmental Engineering at the NUS Faculty of Engineering, published the results in the scientific journal Harmful Algae. This study was made available online in July 2019 ahead of the final publication in September 2019.

Current challenges of water quality monitoring

A sudden surge in the volume of algae and their associated toxins in lakes, ponds, rivers, and coastal waters can adversely affect water quality, and in turn, may have unfavourable effects on human health, aquatic ecosystems, and water supply. For instance, in 2015, an algae bloom wiped out more than 500 tonnes of fish in Singapore, and caused some fish farmers to lose millions of dollars.

Conventional methods of algae detection and analysis are time consuming, and require specialised and costly equipment, as well as skilled operators to conduct water sampling and testing. One approach is to test for the presence of chlorophyll using complex instruments that cost more than S$3,000 (US$2,200). Another common method is to carry out cytometric and image analysis to detect algal cells - this method involves equipment that cost more than S$100,000 (US$73,000).

"Currently, it can take a day or more to collect water samples from a site, bring them back to the laboratory for testing, and analyse the results. This long lead time is impractical for monitoring of algae blooms, as the management of contamination sources and affected waters could be slowed down," explained Asst Prof Bae.

To address the current challenges in water quality monitoring, Asst Prof Bae and his team took a year to develop the novel device that monitors microbial water quality rapidly and with high reliability.

New 'lab-on-a-chip' technology: Cheaper, smaller and highly sensitive

The new NUS invention comprises three sections - a microfluidic chip, a smartphone, and a customisable 3D-printed platform that houses optical and electrical components such as a portable power source and an LED light.

The chip is first coated with titanium oxide phthalocyanine, a type of photoconductive polymer-based material. The photoconductive layer plays the important role of guiding water droplets to move along the chip during the analysis process.

The coated chip is then placed on top of the screen of a smartphone, which projects a pattern of light and dark regions onto the chip. When droplets of the water sample are deposited on the surface of the chip, a voltage drop difference, created by the light and dark areas illuminated on the photoconductive layer, modifies the surface tension of the water droplets. This causes the water droplets to move towards the dark illuminated areas. At the same time, this movement induces the water droplets to mix with a chemical that stains algae cells present in the water sample. The mixture is guided by the light patterns towards the camera of the smartphone.

Next, an LED light source and a green filter embedded in the 3D-printed platform, near the camera of the smartphone, create the conditions suitable for the camera to capture fluorescent images of the stained algae cells. The images can be sent to an app on the smartphone to count the number of algae cells present in the sample. The images can also be sent wirelessly to another location via the smartphone to quantify the number of algae cells. The entire analysis process can be completed within 15 minutes.

This portable and easy-to-use device costs less than S$300 (US$220) - excluding the smartphone - and weighs less than 600 grams. The test kit is also highly sensitive, hence only a small amount of water sample is needed to generate reliable results.

High detection accuracy of 90 per cent

The NUS research team tested their system using water samples collected from the sea and reservoirs. The water samples were filtrated and spiked with specific amounts of four different types of toxin-producing algae - two types of freshwater algae C. reinhardtii and M. aeruginosa, and two types of marine water algae Amphiprora sp and C. closterium. Experiments using the new device and a hemocytometer, a standard cell-counting technique commonly used for water quality monitoring, were conducted to test for the presence of algae.

The new smartphone system was able to detect the four types of algae with an accuracy of 90 per cent, comparable with the results generated by the hemocytometer.

Asst Prof Bae shared, "The combination of on-chip sample preparation, data capture and analysis makes our system unique. With this tool, water quality tests can be conducted anytime and anywhere. This new method is also very cost efficient as the microfluidic chip can be washed and re-used. This device will be particularly useful for fish farmers who need to monitor the water quality of their fish ponds on a daily basis."
-end-
This project was supported by the National Research Foundation Singapore through its Marine Science Research and Development Programme, and the Ministry of Education.

Commercialisation and further studies

The research team is currently in discussion with industry partners to commercialise their technology.

The NUS researchers are also developing a new microfluidic chip that can be integrated with a modified version of the current 3D-printed smartphone platform to detect the presence of foodborne pathogens such as salmonella and other infectious pathogens.

National University of Singapore

Related Water Quality Articles:

Control of anthropogenic atmospheric emissions can improve water quality in seas
A new HKU research highlighted the importance of reducing fossil fuel combustion not only to curb the trend of global warming, but also to improve the quality of China's coastal waters.
Pharma's potential impact on water quality
When people take medications, these drugs and their metabolites can be excreted and make their way to wastewater treatment plants.
Study: Your home's water quality could vary by the room -- and the season
A study has found that the water quality of a home can differ in each room and change between seasons, challenging the assumption that the water in a public water system is the same as the water that passes through a building's plumbing at any time of the year.
Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.
How anti-sprawl policies may be harming water quality
Urban growth boundaries are created by governments in an effort to concentrate urban development -- buildings, roads and the utilities that support them -- within a defined area.
China's inland surface water quality significantly improves
A new study shows that China's inland surface water quality improved significantly from 2003-2017, coinciding with major efforts beginning in 2001 to reduce water pollution in the country.
Studying water quality with satellites and public data
The researchers built a novel dataset of more than 600,000 matchups between water quality field measurements and Landsat imagery, creating a 'symphony of data.'
How to improve water quality in Europe
Toxic substances from agriculture, industry and households endanger water quality in Europe -- and by extension, ecosystems and human health.
Revolutionizing water quality monitoring for our rivers and reef
New, lower-cost help may soon be on the way to help manage one of the biggest threats facing the Great Barrier Reef.
Trees for water quality credits
In a new study, UC Santa Barbara Bren School professor Arturo Keller links reforestation to water quality credits.
More Water Quality News and Water Quality Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.