Nav: Home

KIER Identified Ion Transfer Principles of Salinity Gradient Power Generation Technology

November 07, 2019

Dr. Kim Hanki of Jeju Global Research Center, Korea Institute of Energy Research (Director Kwak Byong-Sung) developed a mathematical analysis model that can identify the ion transfer principle of salinity gradient power technology. The result was published in 'Water Research,' which is the top authority in the field of water resources.*

* Water Research: Number 1 international journal in the field of water resources (published by Elsevier, SCI IF 7.051)

Salinity gradient power produces electrical energy by using the difference in salt concentration between seawater and fresh water which has a tremendous energy potential. Now, the technology development for commercialization is actively progressing.

The reverse electrodialysis is a representative salinity gradient power technology. It converts free energy in seawater to electrical energy by moving ions through ion-exchange membranes. Recently, key technologies such as pore-filled ion-exchange membranes ** have been newly developed. However, it is tough to analyze the performance of the pore-filling ion-exchange membranes with existing mathematical model precisely.

** Pore-filling ion exchange membrane: A separator membrane which is made to selectively ion exchange by filling a hydrophilic polymer capable of ion transfer in nano size pores of hydrophobic support. It has lower electrical resistance and higher selectivity than commercial ion exchange membranes

To solve this issue, the researchers successfully applied the concept of 'Conductive Traveling Length (CTL)' into the existing mathematical model to identify the principle of ion transfer in the pore-filling ion-exchange membranes.

'Conductive Traveling Length' is the movement distance of ions through the hydrophilic nano pores in the pore-filling ion exchange membrane. By calculating the ratio of conductive site in nano pores in the ion exchange membrane, it became possible to develop the results of ion transfer analysis and the accuracy of predicting the performance of reverse electrodialysis.

In addition, the developed mathematical model by the research team can be applied to various ion-exchange membranes including pore-filling ion-exchange membrane. This method will significantly impact the commercialization of reverse electrodialysis technology.

Kim Hanki, a senior researcher at the Korea Institute of Energy Research, who is the main author of the research paper said, "Through this development of analytical modeling, the increase in feasibility of the design and performance of reverse electrodialysis is expected, which can accelerate its development. Moreover, the developed mathematical modeling will contribute to localization of manufacturing ion-exchange membrane and the reverse electrodialysis stack."

Meanwhile, Jeju Global Research Center of Korea Institute of Energy Research has completed localization of the pore-filled ion exchange membrane then succeeded in development of the reverse electrodialysis equipment. The researchers are now leading the field in salinity gradient power by conducting the projected named 'Developing core-technology of salinity gradient power for building electrical vehicle (EV) charging infrastructure.'

National Research Council of Science & Technology

Related Technology Articles:

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.
The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
Transformative technology
UC Davis neuroscientists have developed fluorescence sensors that are opening a new era for the optical recording of dopamine activity in the living brain.
Do the elderly want technology to help them take their medication?
Over 65s say they would find technology to help them take their medications helpful, but need the technology to be familiar, accessible and easy to use, according to research by Queen Mary University of London and University of Cambridge.
Technology detecting RNase activity
A KAIST research team of Professor Hyun Gyu Park at Department of Chemical and Biomolecular Engineering developed a new technology to detect the activity of RNase H, a RNA degrading enzyme.
Taking technology to the next level
Physicists from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) developed a new hybrid integrated platform, promising to be a more advanced alternative to conventional integrated circuits.
How technology use affects at-risk adolescents
More use of technology led to increases in attention, behavior and self-regulation problems over time for adolescents already at risk for mental health issues, a new study from Duke University finds.
Hold-up in ventures for technology transfer
The transfer of technology brings ideas closer to commercialization. The transformation happens in several steps, such as invention, innovation, building prototypes, production, market introduction, market expansion, after sales services.
The ultimate green technology
Imagine patterning and visualizing silicon at the atomic level, something which, if done successfully, will revolutionize the quantum and classical computing industry.
More Technology News and Technology Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at