Nav: Home

Predicting the response of HIV-infected individuals to checkpoint inhibitor immunotherapy

November 07, 2019

A group of researchers at UPF and the Marchuk Institute of Numerical Mathematics in Moscow, Russia, have designed a mathematical model to predict the response of HIV-infected individuals to a type of cancer immunotherapy. The study, which is now published in PLOS Computational Biology, has been led by Andreas Meyerhans and Gennady Bocharov.

More than thirty years after the identification of the Human Immunodeficiency Virus (HIV), this persistent infection is managed with multiple antiretroviral drugs. Thanks to the current therapy regimens, in many parts of the world, HIV is a chronic condition in which progression to AIDS is increasingly uncommon.

Focusing studies on HIV and cancer patients is relevant because many long-term HIV patients develop cancer. HIV therapies have improved over the years and patients live longer, but they have an increased risk of cancer due to constant immune activation.

T cells play a central role in both diseases due to their central role in the immune response. These types of lymphocytes can specifically recognize foreign antigens and respond to their presence. When the immune system is forced to be active for extended periods, such as with persistent viral infections or the progressive development of cancer, T cells receive an excessive amount of signals, which lead them to suffer gradual functional deterioration, a phenomenon known as T cell exhaustion.

Immunotherapy is a form of cancer treatment that uses the patient's immune system to recognize and fight the disease. There is a type of immunotherapy known as checkpoint inhibitors that are able to reactivate exhausted T cells, increasing their proliferation and function, thus reinvigorating the immune response against tumours. Most clinical trials with checkpoint inhibitors on cancer excluded patients with chronic infections, so data on this comorbidity is scarce. In this study, researchers generated models to assess how well HIV patients would respond to this therapy. Specifically, using both experimental and theoretical approaches, they aimed to quantify how the therapy with checkpoint inhibitors produces a T cell functional gain and also to predict the therapeutic effect for HIV patients at different stages of disease progression.

The scientists studied human blood samples from HIV-infected individuals, stimulated them with checkpoint inhibitors and then monitored the behaviour in cell culture. "Then we quantified the different responses, and developed a mathematical model to predict how the progression of HIV will be affected", said Gennady Bocharov. "We predicted how much the virus is reduced and how many CD4 T cells increase in the patient, which has a clinical significance", he added.

From the model, the scientists predict that most HIV-infected individuals will benefit from checkpoint inhibitor therapy, but the benefit is dependent on intrapatient immune responsiveness. "A checkpoint inhibitor reactivating T cells is like adding fuel to a car. But depending on the type of car, the amount of fuel has a different effect and one car could go further or nearer. In this case, the immune response to HIV differs between individuals and this can determine whether the person experiences more, less or no benefit from the therapy", explains Andreas Meyerhans, ICREA research professor at UPF.

Their main prediction is that the individuals who already control HIV well do not benefit so much from this therapy, but individuals who do not control the virus well may benefit more.

This approach provides a general framework of how to link experimental biomarkers that can be measured from patient samples ex vivo with the patient's clinical benefit. "The more we will be able to quantitate and formalize mechanistic relationships in complex diseases, the closer we will be to personalizing treatment strategies", says Andreas Meyerhans. And Gennady Bocharov concludes, "Our general approach can be extended to other immunotherapies and is an important step forward towards personalized treatment strategies in infectious diseases and cancers".
-end-


Universitat Pompeu Fabra - Barcelona

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.