Nav: Home

Thorium superconductivity: Scientists discover a new high-temperature superconductor

November 07, 2019

A group of scientists led by Artem Oganov, Professor at Skoltech and MIPT, and Dr. Ivan Troyan at the Institute of Crystallography of RAS have succeeded in synthesizing thorium decahydride (ThH10), a new superconducting material with a very high critical temperature (161 K). The results of their study supported by a Russian Science Foundation (RSF) grant were published in the journal Materials Today.

A truly remarkable property of quantum materials, superconductivity is a complete loss of electrical resistance under quite particular, and sometimes, very harsh conditions. Despite the tremendous potential for quantum computers and high-sensitivity detectors, the application of quantum materials is hindered by the fact that superconductivity typically manifests itself at very low temperatures or extremely high pressures. Until recently, the list of superconductors was topped by mercury-containing cuprate that becomes superconducting at 135 K (-138 °C). This year, lanthanum decahydride, LaH10, has set a new record of -13 oС, which is very close to room temperature, although in the case of LaH10 superconductivity is achieved at nearly 2 million atmospheres, a pressure that can hardly be attained in real life. It is important to achieve superconductivity at temperatures and pressures close to room levels. In 2018, Alexander Kvashnin, a research scientist at the lab directed by Skoltech and MIPT professor, Artem R. Oganov, predicted a new material, thorium polyhydride (ThH10), with a critical temperature of -32 oС at THE pressure of 1 million atmospheres.

In their recent study, scientists from the Institute of Crystallography of RAS, Skoltech, MIPT and the Lebedev Institute of Physics of RAS have successfully obtained ThH10 and studied its transport properties and superconductivity. Their findings corroborated the theoretical predictions, proving that ThH10 exists at pressures above 0.85 million atmospheres and displays outstanding high-temperature superconducting performance. The scientists could only determine the critical temperature at 1.7 million atmospheres and found it to be -112 oС, which is consistent with the theoretical prediction for this pressure value, placing ThH10 among the record-breaking high-temperature superconductors.

"Modern theory, and in particular, the USPEX method developed by myself and my students, yet again displayed their amazing predictive power. ThH10 pushes the boundaries of classical chemistry and possesses unique properties that were predicted theoretically and recently confirmed by experiment. Most notably, the experimental results obtained by Ivan Troyan's lab are of very high quality," says Artem R. Oganov, co-director of the study and professor at Skoltech and MIPT.

"We discovered that superconductivity predicted in theory does exist at -112 oС and 1.7 million atmospheres. Given the strong consistency between theory and experiment, it would be interesting to check whether ThH10 will show superconductivity at up to -30-40 °C and lower pressures as predicted," says co-director of the study, Dr. Ivan Troyan.

"Thorium hydride is just one of the elements in a large and rapidly growing class of hydride superconductors. I believe that in the coming years, hydride superconductivity will expand beyond the cryogenic range to find application in the design of electronic devices," says the first author of the study and Skoltech PhD student, Dmitry Semenok.
-end-


Skolkovo Institute of Science and Technology (Skoltech)

Related Superconductivity Articles:

Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.
First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.
A hallmark of superconductivity, beyond superconductivity itself
Physicists have found 'electron pairing,' a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity occurs.
Manipulating superconductivity using a 'mechanic' and an 'electrician'
Strongly correlated materials can change their resistivity from infinity to zero with minute changes in conditions.
Triplet superconductivity demonstrated under high pressure
Researchers in France and Japan have demonstrated a theoretical type of unconventional superconductivity in a uranium-based material, according to a study published in the journal Physical Review Letters.
The mechanism of high-temperature superconductivity is found
Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity.
Superconductivity is heating up
Theory suggests that metallic hydrogen should be a superconductor at room temperature; however, this material has yet to be produced in the lab.
Light pulses provide a new route to enhance superconductivity
Scientists have shown that pulses of light could be used to turn materials into superconductors through an unconventional type of superconductivity known as 'eta pairing.'
Graphene on the way to superconductivity
Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance.
New quantum criticality discovered in superconductivity
Using solid state nuclear magnetic resonance (ssNMR) techniques, scientists at the U.S.
More Superconductivity News and Superconductivity Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.