Nav: Home

Thorium superconductivity: Scientists discover new high-temperature superconductor

November 07, 2019

A group of scientists led by Artem Oganov of Skoltech and the Moscow Institute of Physics and Technology, and Ivan Troyan of the Institute of Crystallography of RAS has succeeded in synthesizing thorium decahydride (ThH10), a new superconducting material with the very high critical temperature of 161 kelvins. The results of their study, supported by a Russian Science Foundation grant, were published in the journal Materials Today.

A truly remarkable property of quantum materials, superconductivity is the complete loss of electrical resistance under quite specific, and sometimes very harsh, conditions. Despite the tremendous potential for quantum computers and high-sensitivity detectors, the application of superconductors is hindered by the fact that their valuable properties typically manifest themselves at very low temperatures or extremely high pressures.

Until recently, the list of superconductors was topped by a mercury-containing cuprate, which becomes superconducting at 135 kelvins, or −138 degrees Celsius. This year, lanthanum decahydride, LaH10, set a new record of −13 C, which is very close to room temperature. Unfortunately, that superconductor requires pressures approaching 2 million atmospheres, which can hardly be maintained in real-life applications. Scientists therefore continue their quest for a superconductor that retains its properties at standard conditions.

In 2018, Alexander Kvashnin, a researcher at Oganov's lab, predicted a new material -- thorium polyhydride, or ThH10 (fig. 1) -- with a critical temperature of −32 C, stable under 1 million atmospheres. In a recent study, researchers from Skoltech, MIPT, the Institute of Crystallography and Lebedev Institute of Physics of the Russian Academy of Sciences (RAS) have successfully obtained ThH10 and studied its transport properties and superconductivity.

The team's findings corroborated the theoretical predictions, proving that ThH10 exists at pressures above 0.85 million atmospheres and exhibits amazing high-temperature superconductivity. The scientists could only determine the critical temperature at 0.7 million atmospheres and found it to be −112 C, which is consistent with the theoretical prediction for that pressure value. This makes ThH10 one of the record-breaking high-temperature superconductors.

"Modern theory, and in particular, the USPEX method developed by myself and my students, yet again displayed their amazing predictive power," said Skoltech and MIPT Professor Artem Oganov, who co-directed the study. "ThH10 pushes the boundaries of classical chemistry and possesses unique properties that were predicted theoretically and recently confirmed by experiment. Most notably, the experimental results obtained by Ivan Troyan's lab are of very high quality."

"We discovered that superconductivity predicted in theory does exist at −112 C and 0.7 million atmospheres," study co-director Ivan Troyan added. "Given the strong consistency between theory and experiment, it would be interesting to check whether ThH10 will show superconductivity at up to −30 C...−40 C and lower pressures as predicted."

"Thorium hydride is just one of the elements in a large and rapidly growing class of hydride superconductors," said the first author of the study, Skoltech PhD student Dmitry Semenok. "I believe that in the coming years, hydride superconductivity will expand beyond the cryogenic range to find application in the design of electronic devices."
-end-


Moscow Institute of Physics and Technology

Related Superconductivity Articles:

How a magnet could help boost understanding of superconductivity
Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity.
New study explains why superconductivity takes place in graphene
Theoretical physicists take important step in development of high temperature superconductors.
Better studying superconductivity in single-layer graphene
A new study published in EPJ B demonstrates that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.
Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.
First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.
A hallmark of superconductivity, beyond superconductivity itself
Physicists have found 'electron pairing,' a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity occurs.
Manipulating superconductivity using a 'mechanic' and an 'electrician'
Strongly correlated materials can change their resistivity from infinity to zero with minute changes in conditions.
Triplet superconductivity demonstrated under high pressure
Researchers in France and Japan have demonstrated a theoretical type of unconventional superconductivity in a uranium-based material, according to a study published in the journal Physical Review Letters.
The mechanism of high-temperature superconductivity is found
Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity.
Superconductivity is heating up
Theory suggests that metallic hydrogen should be a superconductor at room temperature; however, this material has yet to be produced in the lab.
More Superconductivity News and Superconductivity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.