Nav: Home

No more traffic blues for information transfer: decongesting wireless channels

November 07, 2019

The wireless Internet of Things (IoT) is a network of devices in which each device can directly send information to another over wireless channels of communication, without human intervention. With the number of IoT devices increasing every day, the amount of information on the wireless channels is also increasing. This is causing congestion over the network, leading to loss of information due to interference and the failure of information delivery. Research to solve this problem of congestion is ongoing, and the most widely accepted and applied solution is the "multi-channel" technology. In this technology, information transmission is distributed among various parallel channels based on the traffic in a particular channel at a given time.

But, at present, optimal information transmission channels are selected using algorithms that cannot be supported by most existing IoT devices because these are resource-constrained; i.e., they have low storage capacity and low processing power, and must be power-saving while remaining in operation for long periods of time. In a recent study published in Applied Sciences, a group of scientists from the Tokyo University of Science and Keio University, Japan, propose the use of a machine-learning algorithm, based on the tug-of-war model (which is a fundamental model, earlier proposed by Professor Song-Ju Kim from Keio University, that is used to solve such problems as that of how to distribute information across channels), to select channels. "We realized that this algorithm could be applied to IoT devices, and we decided to implement it and experiment with it," Professor Mikio Hasegawa, the lead scientist from the Tokyo University of Science, says.

In their study, they built a system in which several IoT devices were connected to form a network and each device could only select one of several available channels through which to transmit information each time. Moreover, each device was resource-constrained. In the experiment, the devices were tasked with waking up, transmitting one piece of information, going to sleep, and then repeating the cycle a certain number of times. The role of the proposed algorithm was to enable the devices to select the optimal channel each time, such that at the end of it all, the highest possible number of successful transmissions (i.e., when all the information reaches its destination in one piece) has taken place.

The algorithm is called reinforcement-learning and it goes about the task as follows: every time a piece of information is transmitted through a channel, it notes the probability of achieving successful transmissions via that channel, based on whether the information completely and accurately reaches its destination. It updates this data with every subsequent transmission.

The researchers used this setup to also check a) whether the algorithm was successful, b) whether it was unbiased in its selection of channels, and c) whether it could adapt to traffic variations in a channel. For the tests, an additional control system was constructed in which each device was assigned a particular channel and it could not select any other channel when transmitting information. In the first case, some channels were congested before beginning the experiment, and the scientists found that the number of successful transmissions was larger when the algorithm was used, as opposed to when it was not. In the second case, some channels became congested when the algorithm was not used, and information could not be transmitted through them after a point of time, causing "unfairness" in channel selection. However, when the scientists used the algorithm, the channel selection was found to be fair. The findings for the third case clarify those for the previous two cases: when the algorithm was used, devices automatically began to ignore a congested channel and re-used it only when the traffic in it decreased.

"We achieved channel selection with a small amount of computation and a high-performance machine-learning algorithm," Prof Hasegawa tells us. While this means that the algorithm successfully solved the channel selection problem under experimental conditions, its faring in the real world remains to be seen. "Field experiments to test the robustness of this algorithm will be conducted in further research," the scientists say. They also plan to improve the algorithm in future research by taking into consideration other network characteristics, such as channel transmission quality.

The world is swiftly moving towards massive wireless IoT networks with an increasing number of devices connecting over wireless channels globally. Every possible organization or scholar is taking the opportunity of this moment in the history of time to solve the channel selection problem and get ahead of the game. Prof Hasegawa and his team have managed to take one of the first steps in the race. The future of high-speed, error-free wireless information transmission may be near!
-end-
About the Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of "Creating science and technology for the harmonious development of nature, human beings, and society", TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

About Professor Mikio Hasegawa from Tokyo University of Science

Dr Mikio Hasegawa is currently a Professor at the Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, Japan. This paper is the latest in a vast body of research presentations, about 130 publications, and in it he serves as the lead author. His research began in 1994 and has spanned fields ranging from Chaos theory to mobile internet and mathematical engineering considering complex systems theories. He has won several awards for his research, including a best paper award in February 2019.

Tokyo University of Science

Related Algorithm Articles:

New algorithm to help process biological images
Skoltech researchers have presented a new biological image processing method that accurately picks out specific biological objects in complex images.
Skoltech scientists break Google's quantum algorithm
In the near term, Google has devised new quantum enhanced algorithms that operate in the presence of realistic noise.
The most human algorithm
A team from the research group SEES:lab of the Department of Chemical Engineering of the Universitat Rovira I Virgili and ICREA has made a breakthrough with the development of a new algorithm that makes more accurate predictions and generates mathematical models that also make it possible to understand these predictions.
Algorithm turns cancer gene discovery on its head
Prediction method could help personalize cancer treatments and reveal new drug targets.
New algorithm predicts gestational diabetes
Timely prediction may help prevent the condition using nutritional and lifestyle changes.
New algorithm could mean more efficient, accurate equipment for Army
Researchers working on an Army-funded project have developed an algorithm to simulate how electromagnetic waves interact with materials in devices to create equipment more efficiently and accurately.
Universal algorithm set to boost microscopes
EPFL scientists have developed an algorithm that can determine whether a super-resolution microscope is operating at maximum resolution based on a single image.
Algorithm designed to map universe, solve mysteries
Cornell University researchers have developed an algorithm designed to visualize models of the universe in order to solve some of physics' greatest mysteries.
Algorithm tells robots where nearby humans are headed
A new tool for predicting a person's movement trajectory may help humans and robots work together in close proximity.
Algorithm to transform investment banking with higher returns
A University of Bath researcher has created an algorithm which aims to remove the elements of chance, bias or emotion from investment banking decisions, a development which has the potential to reduce errors in financial decision making and improve financial returns in global markets.
More Algorithm News and Algorithm Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.