Nav: Home

No more traffic blues for information transfer: decongesting wireless channels

November 07, 2019

The wireless Internet of Things (IoT) is a network of devices in which each device can directly send information to another over wireless channels of communication, without human intervention. With the number of IoT devices increasing every day, the amount of information on the wireless channels is also increasing. This is causing congestion over the network, leading to loss of information due to interference and the failure of information delivery. Research to solve this problem of congestion is ongoing, and the most widely accepted and applied solution is the "multi-channel" technology. In this technology, information transmission is distributed among various parallel channels based on the traffic in a particular channel at a given time.

But, at present, optimal information transmission channels are selected using algorithms that cannot be supported by most existing IoT devices because these are resource-constrained; i.e., they have low storage capacity and low processing power, and must be power-saving while remaining in operation for long periods of time. In a recent study published in Applied Sciences, a group of scientists from the Tokyo University of Science and Keio University, Japan, propose the use of a machine-learning algorithm, based on the tug-of-war model (which is a fundamental model, earlier proposed by Professor Song-Ju Kim from Keio University, that is used to solve such problems as that of how to distribute information across channels), to select channels. "We realized that this algorithm could be applied to IoT devices, and we decided to implement it and experiment with it," Professor Mikio Hasegawa, the lead scientist from the Tokyo University of Science, says.

In their study, they built a system in which several IoT devices were connected to form a network and each device could only select one of several available channels through which to transmit information each time. Moreover, each device was resource-constrained. In the experiment, the devices were tasked with waking up, transmitting one piece of information, going to sleep, and then repeating the cycle a certain number of times. The role of the proposed algorithm was to enable the devices to select the optimal channel each time, such that at the end of it all, the highest possible number of successful transmissions (i.e., when all the information reaches its destination in one piece) has taken place.

The algorithm is called reinforcement-learning and it goes about the task as follows: every time a piece of information is transmitted through a channel, it notes the probability of achieving successful transmissions via that channel, based on whether the information completely and accurately reaches its destination. It updates this data with every subsequent transmission.

The researchers used this setup to also check a) whether the algorithm was successful, b) whether it was unbiased in its selection of channels, and c) whether it could adapt to traffic variations in a channel. For the tests, an additional control system was constructed in which each device was assigned a particular channel and it could not select any other channel when transmitting information. In the first case, some channels were congested before beginning the experiment, and the scientists found that the number of successful transmissions was larger when the algorithm was used, as opposed to when it was not. In the second case, some channels became congested when the algorithm was not used, and information could not be transmitted through them after a point of time, causing "unfairness" in channel selection. However, when the scientists used the algorithm, the channel selection was found to be fair. The findings for the third case clarify those for the previous two cases: when the algorithm was used, devices automatically began to ignore a congested channel and re-used it only when the traffic in it decreased.

"We achieved channel selection with a small amount of computation and a high-performance machine-learning algorithm," Prof Hasegawa tells us. While this means that the algorithm successfully solved the channel selection problem under experimental conditions, its faring in the real world remains to be seen. "Field experiments to test the robustness of this algorithm will be conducted in further research," the scientists say. They also plan to improve the algorithm in future research by taking into consideration other network characteristics, such as channel transmission quality.

The world is swiftly moving towards massive wireless IoT networks with an increasing number of devices connecting over wireless channels globally. Every possible organization or scholar is taking the opportunity of this moment in the history of time to solve the channel selection problem and get ahead of the game. Prof Hasegawa and his team have managed to take one of the first steps in the race. The future of high-speed, error-free wireless information transmission may be near!
-end-
About the Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of "Creating science and technology for the harmonious development of nature, human beings, and society", TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

About Professor Mikio Hasegawa from Tokyo University of Science

Dr Mikio Hasegawa is currently a Professor at the Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, Japan. This paper is the latest in a vast body of research presentations, about 130 publications, and in it he serves as the lead author. His research began in 1994 and has spanned fields ranging from Chaos theory to mobile internet and mathematical engineering considering complex systems theories. He has won several awards for his research, including a best paper award in February 2019.

Tokyo University of Science

Related Algorithm Articles:

Algorithm personalizes which cancer mutations are best targets for immunotherapy
As tumor cells multiply, they often spawn tens of thousands of genetic mutations.
Universal algorithm set to boost microscopes
EPFL scientists have developed an algorithm that can determine whether a super-resolution microscope is operating at maximum resolution based on a single image.
Algorithm designed to map universe, solve mysteries
Cornell University researchers have developed an algorithm designed to visualize models of the universe in order to solve some of physics' greatest mysteries.
Algorithm tells robots where nearby humans are headed
A new tool for predicting a person's movement trajectory may help humans and robots work together in close proximity.
Algorithm to transform investment banking with higher returns
A University of Bath researcher has created an algorithm which aims to remove the elements of chance, bias or emotion from investment banking decisions, a development which has the potential to reduce errors in financial decision making and improve financial returns in global markets.
Algorithm provides customized caffeine strategy for alertness
A web-based caffeine optimization tool successfully designs effective strategies to maximize alertness while avoiding excessive caffeine consumption, according to preliminary results from a new study.
New algorithm optimizes quantum computing problem-solving
Tohoku University researchers have developed an algorithm that enhances the ability of a Canadian-designed quantum computer to more efficiently find the best solution for complicated problems, according to a study published in the journal Scientific Reports.
Machine learning algorithm helps in the search for new drugs
Researchers have designed a machine learning algorithm for drug discovery which has been shown to be twice as efficient as the industry standard, which could accelerate the process of developing new treatments for disease.
Researchers create algorithm to predict PEDV outbreaks
Researchers from North Carolina State University have developed an algorithm that could give pig farms advance notice of porcine epidemic diarrhea virus (PEDV) outbreaks.
New algorithm provides a more detailed look at urban heat islands
Urban areas are warmer than the adjacent undeveloped land, a phenomenon known as the urban heat island effect.
More Algorithm News and Algorithm Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.