Nav: Home

Research brief: Origin of deadly wheat pathogen revealed

November 07, 2019

MINNEAPOLIS/ST. PAUL (11/07/19) -- Stem rust is a devastating wheat disease that has caused famines and undermined economies around the world for centuries.

One particular strain of the stem rust fungus, dubbed "Ug99," threatens the global wheat supply because it can attack more than 80% of all varieties planted across the world. The ability of Ug99 to attack so many wheat varieties has confounded scientists and farmers since its discovery in Africa two decades ago.

Now, a team of researchers has uncovered the basis of Ug99's wide virulence by examining the pathogen's genome. They determined that the pathogen's ability to attack so many wheats can be traced to a rarely observed phenomenon where two different rust strains fuse together and exchange intact nuclei. This event creates a hybrid strain with a wider host range than its original parents.

This investigation is the first to provide compelling genome-wide data that this event, called "somatic hybridization," in the rust fungi can generate new virulence combinations. It also helps explain the sudden emergence of Ug99 in Africa.

"Ug99 is an imminent threat to global food security due to its wide virulence and ability to readily spread across continents and oceans to infect distant wheat crops," said study co-author Brian Steffenson, a plant pathology professor at the University of Minnesota College of Food Agricultural and Natural Resource Sciences (CFANS).

"We have known for a long time that the stem rust fungus is highly variable, but the molecular basis for this variation was not well understood. This study documents, at the genomic level, one important mechanism for how rust pathogens alter their virulence repertoire in nature."

The discovery is detailed in a paper published Thursday in the journal Nature Communications. The research team included scientists from the University of Minnesota, the Commonwealth Scientific and Industrial Research Organization (CSIRO), Australian National University, and University of the Free State in South Africa.

"This information will be critical for deciphering the genetic basis and evolution of rust virulence on wheat and for monitoring the global movements of the pathogen," said Eva Henningsen, a University of Minnesota graduate student in Plant Pathology.

By analyzing the DNA sequences of the two individual nuclei present in Ug99 and another more established African stem rust strain called Pgt21-0, researchers discovered that:
  • one of the two nuclei in Ug99 was nearly identical to one from Pgt21-0;
  • and the acquisition of this nucleus in Ug99 occurred after somatic fusion with another rust strain, possibly Pgt21-0, creating a unique hybrid that is even more virulent and dangerous to wheat than its parental strains.
"As plant scientists, we're always looking for an advantage over stem rust in order to develop more durably resistant crops," said Feng Li, a University of Minnesota Ph.D. student and joint first author on the study. "The data obtained from this study will provide us with new insights on how Ug99 emerged to threaten wheat across the world."

Beside the practical implications of the study, researchers say they were surprised to learn that hybridization and a nucleus swap were the basis for the virulence shift in Ug99. These events were thought to be rare in nature.

"It was one of those amazing moments in science when you stop and think about how much there is still to learn about nature," said former University of Minnesota professor Melania Figuera, group leader at CSIRO.
-end-
This research was supported by the 2Blades Foundation, USDA-Agriculture and Food Research Initiative, USDA-National Institute of Food and Agriculture, an ARC Future Fellowship and the University of Minnesota Lieberman-Okinow Endowment.

University of Minnesota

Related Pathogen Articles:

New information about the transmission of the amphibian pathogen, Bsal
Using existing data from controlled experiments and computer simulations, researchers with the University of Tennessee Institute of Agriculture have found that host contact rates and habitat structure affect transmission rates of Bsal among eastern newts, a common salamander species found throughout eastern North America.
New pathogen threatens fennel yield in Italy
A new fungal genus and species Ochraceocephala foeniculi causes fennel yield losses of about 20-30% for three different cultivars.
Study shows CRISPR effectiveness against colitis pathogen
Research at North Carolina State University shows that the CRISPR-Cas system can be used to effectively target and eliminate specific gut bacteria, in this case Clostridioides difficile, the pathogen that causes colitis -- a chronic, degenerative disease of the colon.
X-ray eyes peer deeper into deadly pathogen
In a new study, researchers at the Biodesign Center for Applied Structural Discovery and their international colleagues examine a key membrane protein responsible for the tularemia bacterium's prodigious ability to infect the body and cause illness.
New technology for pathogen detection driven by lasers
Purdue innovators have developed a lanthanide-based assay coupled with a laser that can be used to detect toxins and pathogenic E. coli in food samples, water and a variety of industrial materials.
New technique reduces pathogen identification time from two weeks to less than one hour
Canola is a billion-dollar crop for Canada but the growing season in Western Canada is very short.
Fly model offers new approach to unraveling 'difficult' pathogen
Clostridium difficile, a bacterium known to cause symptoms from diarrhea to life-threatening colon damage, is part of a growing epidemic for the elderly and hospitalized patients.
Researchers combine technologies to resolve plant pathogen genomes
With the help of new genomic sequencing and assembly tools, plant scientists can learn more about the function and evolution of highly destructive plant pathogens that refuse to be tamed by fungicides, antibacterial, and antivirals.
Magnesium deprivation stops pathogen growth
When pathogens invade the cells, our body combats them using various methods.
Research brief: Origin of deadly wheat pathogen revealed
A team of researchers has uncovered the basis of stem rust pathogen Ug99's wide virulence, attacking a direct threat to the world wheat supply.
More Pathogen News and Pathogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.