Nav: Home

Stanford scientists link Neanderthal extinction to human diseases

November 07, 2019

Growing up in Israel, Gili Greenbaum would give tours of local caves once inhabited by Neanderthals and wonder along with others why our distant cousins abruptly disappeared about 40,000 years ago. Now a scientist at Stanford, Greenbaum thinks he has an answer.

In a new study published in the journal Nature Communications, Greenbaum and his colleagues propose that complex disease transmission patterns can explain not only how modern humans were able to wipe out Neanderthals in Europe and Asia in just a few thousand years but also, perhaps more puzzling, why the end didn't come sooner.

"Our research suggests that diseases may have played a more important role in the extinction of the Neanderthals than previously thought. They may even be the main reason why modern humans are now the only human group left on the planet," said Greenbaum, who is the first author of the study and a postdoctoral researcher in Stanford's Department of Biology.

The slow kill

Archeological evidence suggests that the initial encounter between Eurasian Neanderthals and an upstart new human species that recently strayed out of Africa -- our ancestors -- occurred more than 130,000 years ago in the Eastern Mediterranean in a region known as the Levant.

Yet tens of thousands of years would pass before Neanderthals began disappearing and modern humans expanded beyond the Levant. Why did it take so long?

Employing mathematical models of disease transmission and gene flow, Greenbaum and an international team of collaborators demonstrated how the unique diseases harbored by Neanderthals and modern humans could have created an invisible disease barrier that discouraged forays into enemy territory. Within this narrow contact zone, which was centered in the Levant where first contact took place, Neanderthals and modern humans coexisted in an uneasy equilibrium that lasted tens of millennia.

Ironically, what may have broken the stalemate and ultimately allowed our ancestors to supplant Neanderthals was the coming together of our two species through interbreeding. The hybrid humans born of these unions may have carried immune-related genes from both species, which would have slowly spread through modern human and Neanderthal populations.

As these protective genes spread, the disease burden or consequences of infection within the two groups gradually lifted. Eventually, a tipping point was reached when modern humans acquired enough immunity that they could venture beyond the Levant and deeper into Neanderthal territory with few health consequences.

At this point, other advantages that modern humans may have had over Neanderthals -- such as deadlier weapons or more sophisticated social structures -- could have taken on greater importance. "Once a certain threshold is crossed, disease burden no longer plays a role, and other factors can kick in," Greenbaum said.

Why us?

To understand why modern humans replaced Neanderthals and not the other way around, the researchers modeled what would happen if the suite of tropical diseases our ancestors harbored were deadlier or more numerous than those carried by Neanderthals.

"The hypothesis is that the disease burden of the tropics was larger than the disease burden in temperate regions. An asymmetry of disease burden in the contact zone might have favored modern humans, who arrived there from the tropics," said study co-author Noah Rosenberg, the Stanford Professor of Population Genetics and Society in the School of Humanities and Sciences.

According to the models, even small differences in disease burden between the two groups at the outset would grow over time, eventually giving our ancestors the edge. "It could be that by the time modern humans were almost entirely released from the added burden of Neanderthal diseases, Neanderthals were still very much vulnerable to modern human diseases," Greenbaum said. "Moreover, as modern humans expanded deeper into Eurasia, they would have encountered Neanderthal populations that did not receive any protective immune genes via hybridization."

The researchers note that the scenario they are proposing is similar to what happened when Europeans arrived in the Americas in the 15th and 16th centuries and decimated indigenous populations with their more potent diseases.

If this new theory about the Neanderthals' demise is correct, then supporting evidence might be found in the archeological record. "We predict, for example, that Neanderthal and modern human population densities in the Levant during the time period when they coexisted will be lower relative to what they were before and relative to other regions," Greenbaum said.
-end-


Stanford University -- School of Humanities and Sciences

Related Neanderthals Articles:

The last Neanderthal necklace
For the first time, researchers found evidence of the ornamental uses of eagle talons in the Iberian Peninsula.
Insight into competitive advantage of modern humans over Neanderthals
A team of Japanese and Italian researchers, including from Tohoku University, have evidenced mechanically delivered projectile weapons in Europe dating to 45,000-40,000 years -- more than 20,000 years than previously thought.
Did a common childhood illness take down the neanderthals?
A new study suggests that the extinction of Neanderthals may be tied to persistent, life-long ear infections due to the structure of their Eustachian tubes, which are similar to those of human infants.
Denisovan finger bone more closely resembles modern human digits than Neanderthals
Scientists have identified the missing part of a finger bone fragment from the Denisova Cave in southern Siberia, revealing that Denisovans -- an early human population discovered when the original fragment was genetically sequenced in 2010 -- had fingers indistinguishable from modern humans despite being more closely related to Neanderthals.
Neanderthals commonly suffered from 'swimmer's ear'
Abnormal bony growths in the ear canal were surprisingly common in Neanderthals, according to a study published Aug.
Neanderthals used resin 'glue' to craft their stone tools
Archaeologists working in two Italian caves have discovered some of the earliest known examples of ancient humans using an adhesive on their stone tools -- an important technological advance called 'hafting.'
Neanderthals made repeated use of the ancient settlement of 'Ein Qashish, Israel
The archaeological site of 'Ein Qashish in northern Israel was a place of repeated Neanderthal occupation and use during the Middle Paleolithic, according to a study released June 26, 2019 in the open-access journal PLOS ONE by Ravid Ekshtain of the Hebrew University of Jerusalem and colleagues.
Ancient DNA analysis adds chapter to the story of neanderthal migrations
After managing to obtain DNA from two 120,000-year-old European Neandertals, researchers report that these specimens are more genetically similar to Neandertals that lived in Europe 80,000 year later than they are to a Neandertal of similar age found in Siberia.
Neanderthals and modern humans diverged at least 800,000 years ago
Neanderthals and modern humans diverged at least 800,000 years ago, substantially earlier than indicated by most DNA-based estimates, according to new research by a UCL academic.
Woolly mammoths and Neanderthals may have shared genetic traits
A new Tel Aviv University study suggests that the genetic profiles of two extinct mammals with African ancestry -- woolly mammoths and Neanderthals -- shared molecular characteristics of adaptation to cold environments.
More Neanderthals News and Neanderthals Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.