Nav: Home

UCI-led study reveals non-image light sensing mechanism of circadian neurons

November 07, 2019

Irvine, CA - November 7, 2019 - University of California, Irvine researchers reveal how an ancient flavoprotein response to ultra violet (UV), blue and red light informs internal circadian processes about the time of day.

The study, led by Todd C. Holmes, PhD, a professor in the Department of Physiology and Biophysics at the UCI School of Medicine, is titled, "Distinct mechanisms of Drosophila CRYPTOCHROME mediated light-evoked membrane depolarization and in vivo clock resetting," and was published in Proceedings of the National Academy of Sciences.

Phototransduction is relatively well characterized in the eyes and other external photoreceptors in animals for image-forming vision. Much less understood are phototransduction mechanisms in non-eye photosensitive cells, including central brain neurons. In the UCI School of Medicine-led study, researchers revealed how blue and ultra violet (UV) light create a sustained light response which is key to a form of non-image-forming vision that averages environmental light levels to determine the time of day and inform internal circadian processes. Red light evokes a light response but less sustained.

"Image-forming vision works so rapidly that humans and likely other animals perceive the visual world as a continuous process," said Holmes. "Our eyes capture moment to moment changes in light that enable us to see objects and movement, even when moving from bright to dark surroundings. An entirely different type of vision, the non-image-forming vision, is important for informing us about the time of day, based on the color and intensity of light. It is a slower visual process that captures an average of light levels rather than moment to moment changes in light."

Using Drosophila melanogaster, commonly known as fruit flies, researchers discovered that non-image-forming vision in invertebrates relies on redox chemistry of a light sensitive protein called Cryptochrome. Biological redox chemistry is typically associated with metabolism.

"The protein ancestors of Cryptochromes were ultraviolet light-activated DNA repair enzymes that appeared in evolution well over 3 billion years ago before the appearance of our present day oxygen rich atmosphere that protects us from harmful ultraviolet radiation. These first light sensing mechanisms evolved when single cell organisms developed the ability to repair their DNA damaged from UV light after coming too close to the surface of water. At that time, there was no life on land. It is remarkable that this ancient form of non-image forming vision persists to the present day."

Light is the primary regulator of circadian rhythms and evokes a wide range of time-of-day specific behaviors. By gaining an understanding of how insects respond to short wavelength light, researchers hope to develop new, environmentally friendly alternatives to controlling harmful insects, such as mosquitoes and flies, and reduce the need for toxic pesticides.
-end-
This study was funded by the National Institutes of Health and an individual NSF Graduate Research Fellowship award. This new research builds on the Holmes lab's previous studies at the UCI School of Medicine published over the past few years in Science, Nature and Proceedings of the National Academy of Sciences. About the UCI School of Medicine: Each year, the UCI School of Medicine educates more than 400 medical students, as well as 200 doctoral and master's students. More than 600 residents and fellows are trained at UC Irvine Medical Center and affiliated institutions. The School of Medicine offers an MD; a dual MD/PhD medical scientist training program; and PhDs and master's degrees in anatomy and neurobiology, biomedical sciences, genetic counseling, epidemiology, environmental health sciences, pathology, pharmacology, physiology and biophysics, and translational sciences. Medical students also may pursue an MD/MBA, an MD/master's in public health, or an MD/master's degree through one of three mission-based programs: the Health Education to Advance Leaders in Integrative Medicine (HEAL-IM), the Leadership Education to Advance Diversity-African, Black and Caribbean (LEAD-ABC), and the Program in Medical Education for the Latino Community (PRIME-LC). The UCI School of Medicine is accredited by the Liaison Committee on Medical Accreditation and ranks among the top 50 nationwide for research. For more information, visit som.uci.edu.

University of California - Irvine

Related Vision Articles:

The birth of vision, from the retina to the brain
How do neurons differentiate to become individual components of the visual system?
Tracing the evolution of vision
The function of the visual photopigment rhodopsin and its action in the retina to facilitate vision is well understood.
Going the distance: Brain cells for 3D vision discovered
Scientists at Newcastle University have discovered neurons in insect brains that compute 3D distance and direction.
A new vision for genomics in animal agriculture
Iowa State University animal scientists helped to form a blueprint to guide the next decade of animal genomics research.
Putting vision models to the test
MIT neuroscientists have performed the most rigorous testing yet of computational models that mimic the brain's visual cortex.
A new vision for neuroscience
For decades scientists have been searching for a way to watch a live broadcast of the brain.
How the brain reacts to loss of vision
If mice lose their vision immediately after birth due to a genetic defect, this has a considerable impact, both on the organisation of the cerebral cortex and on memory ability.
Enhancing our vision of the past
An international group of scientists led by researchers from the University of Bristol have advanced our understanding of how ancient animals saw the world by combining the study of fossils and genetics.
Can chiropractic care disrupt vision?
For those in the habit of getting their neck adjusted by a chiropractor, there's an interesting case from Kellogg Eye Center to know about: High velocity neck manipulation has been shown to create stress on the eye and lead to spotty vision.
Can psychological stress cause vision loss?
Persistent psychological stress, which is widely recognized as a consequence of vision loss, is also a major contributor to its development and progression, according to a study now published in the EPMA Journal, the official journal of the European Association for Predictive, Preventive, and Personalized Medicine.
More Vision News and Vision Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.