Nav: Home

Unless warming is slowed, emperor penguins will be marching towards extinction

November 07, 2019

Emperor penguins are some of the most striking and charismatic animals on Earth, but a new study from the Woods Hole Oceanographic Institution (WHOI) has found that a warming climate may render them extinct by the end of this century. The study, which was part of an international collaboration between scientists, published Nov. 7, 2019, in the journal Global Change Biology.

"If global climate keeps warming at the current rate, we expect emperor penguins in Antarctica to experience an 86 percent decline by the year 2100," says Stephanie Jenouvrier, a seabird ecologist at WHOI and lead author on the paper. "At that point, it is very unlikely for them to bounce back."

The fate of the penguins is largely tied to the fate of sea ice, which the animals use as a home base for breeding and molting, she notes. Emperor penguins tend to build their colonies on ice with extremely specific conditions--it must be locked in to the shoreline of the Antarctic continent, but close enough to open seawater to give the birds access to food for themselves and their young. As climate warms, however, that sea ice will gradually disappear, robbing the birds of their habitat, food sources, and ability to hatch chicks.

Jenouvrier and her team conducted the study by combining two existing computer models. The first, a global climate model created by the National Center for Atmospheric Research (NCAR), offered projections of where and when sea ice would form under different climate scenarios. The second, a model of the penguin population itself, calculated how colonies might react to changes in that ice habitat.

"We've been developing that penguin model for 10 years," says Jenouvrier. "It can give a very detailed account of how sea ice affects the life cycle of emperor penguins, their reproduction, and their mortality. When we feed the results of the NCAR climate model into it, we can start to see how different global temperature targets may affect the emperor penguin population as a whole."

The researchers ran the model on three different scenarios: a future where global temperature increases by only 1.5 degrees Celsius (the goal set out by the Paris climate accord), one where temperatures increase by 2 degrees Celsius, and one where no action is taken to reduce climate change, causing to a temperature increase of 5 to 6 degrees Celsius.

Under the 1.5 degree scenario, the study found that only 5 percent of sea ice would be lost by 2100, causing a 19 percent drop in the number of penguin colonies. If the planet warms by 2 degrees, however, those numbers increase dramatically: the loss of sea ice nearly triples, and more than a third of existing colonies disappear. The 'business as usual' scenario is even more dire, Jenouvrier adds, with an almost complete loss of the colonies ensured.

"Under that scenario, the penguins will effectively be marching towards extinction over the next century," she says.
-end-
Also collaborating on the paper were David Iles, Sara Labrousse, and Rubao Ji of WHOI; Hal Caswell of WHOI, the University of Amsterdam, and the Max Planck Institute for Demographic Research; Laura Landrum and Marika Holland of National Center for Atmospheric Research; Jimmy Garnier of the Université Savoie Mont-Blanc; Cristophe Barbraud and Henri Weimerskirch of the Centre d'Etudes Biologiques de Chizé; and Michelle LaRue of the University of Canterbury, New Zealand.

The research was funded by National Science Foundation OPP grant numbers #1643901 and #1744794.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans' role in the changing global environment. For more information, please visit http://www.whoi.edu.

Woods Hole Oceanographic Institution

Related Sea Ice Articles:

Low sea-ice cover in the Arctic
The sea-ice extent in the Arctic is nearing its annual minimum at the end of the melt season in September.
Arctic sea ice 2019 wintertime extent is seventh lowest
Sea ice in the Arctic appears to have hit its annual maximum extent after growing through the fall and winter.
Study shows algae thrive under Greenland sea ice
Microscopic marine plants flourish beneath the ice that covers the Greenland Sea, according to a new study in the Journal of Geophysical Research: Oceans.
ICESat-2 reveals profile of ice sheets, sea ice, forests
With each pass of the ICESat-2 satellite, the mission is adding to datasets tracking Earth's rapidly changing ice.
Arctic cyclone limits the time-scale of precise sea-ice prediction in Northern Sea Route?
Climate change has accelerated sea-ice retreat in the Arctic Ocean, leading to new opportunities for summer commercial maritime navigation along the Northern Sea Route.
Ocean waves following sea ice loss trigger Antarctic ice shelf collapse
Storm-driven ocean swells have triggered the catastrophic disintegration of Antarctic ice shelves in recent decades, according to new research published in Nature today.
New technique more accurately reflects ponds on Arctic sea ice
This one simple mathematical trick can accurately predict the shape and melting effects of ponds on Arctic sea ice, according to new research by UChicago scientists.
Arctic wintertime sea ice extent is among lowest on record
Sea ice in the Arctic grew to its annual maximum extent last week, and joined 2015, 2016 and 2017 as the four lowest maximum extents on record, according to scientists at the NASA-supported National Snow and Ice Data Center (NSIDC) and NASA.
Sea ice algae blooms in the dark
Researchers from Aarhus University have measured a new world record: Small ice algae on the underside of the Arctic sea ice live and grow at a light level corresponding to only 0.02 percent of the light at the surface of the ice.
Weather anomalies accelerate the melting of sea ice
ETH researchers reveal why Arctic sea ice began to melt in the middle of winter two years ago -- and that the increased melting of ice in summer is linked to recurring periods of fair weather.
More Sea Ice News and Sea Ice Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.