Nav: Home

Research suggests fumigants have very low long-term impact on soil health

November 07, 2019

It started with curiosity. How does a fumigant, commonly used for nematode management in potato cropping systems, influence soil microbial communities?

To explore this question, scientists at Colorado State University and Oregon State University used high-throughput sequencing techniques to investigate changes in soil bacterial and fungal community structure in response to the application of 1,3-Dichloropropene (1,3-D) in Pacific Northwest potato production fields. Their research found that the fumigant had very minor effects.

1,3-D is an organic compound used as a pesticide to control nematodes (roundworms) that reduce the yields of many plants. Despite its widespread use, little is known about the fumigant's effects on other organisms in soil. A recent paper published in the open access Phytobiomes Journal is one of the first to report on the effects of nematode management practice, specifically 1,3-D, on soil microflora.

"We found it interesting that only minor effects of 1,3-D were observed on both bacterial and fungal communities, suggesting that soil can be a robust ecosystem and fumigants may not have a long-term impact on the overall microbial community," said researcher Kenneth Frost. The research also showed that the average efficacy of 1,3-D was estimated to be 98% across all nematodes studied, which included root lesion and stubby root nematodes.

As a result of this research, the authors suggest there may be a greater impact on microbial community from other agricultural practices, such as tillage, use of cover crops, irrigation, and precipitation, than fumigant application in potato cropping systems.

There is still room for more studies of this nature, according to Frost, who says, "We think that investigating soil microbial community structure in response to different crop management strategies, including pesticide application, may eventually help farmers manage their communities in ways that will enhance crop health and productivity."
-end-
For more information, read "Responses of Bacterial and Fungal Community Structure to Different Rates of 1,3-Dichloropropene Fumigation," published in the September issue of Phytobiomes Journal.

American Phytopathological Society

Related Research Articles:

More Research News and Research Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.