Computer graphic technology to help low-vision sufferers

November 08, 2001

ITHACA, N.Y. -- A computer graphics project at Cornell University could lead to an improved quality of life for people with visual disorders classified as "low vision."

James Ferwerda, a research associate in the Cornell Program of Computer Graphics, is developing computer simulations of the ways in which people with several kinds of low vision see the world. Working backward from these computer models, he plans to process images of the real world into forms that low-vision sufferers can more easily comprehend. The work is funded by a three-year, $450,000 grant from the National Science Foundation's (NSF) Information Technology Research program.

By the end of the project, Ferwerda hopes to create small hand-held devices that would help visually impaired people read and move around.

Ferwerda, whose background is in both experimental psychology and computer science, says he undertook the project because "it offers an opportunity to use computer graphics technology to make a real difference in people's lives." He will collaborate with Gordon Legge, the Distinguished McKnight University Professor of Psychology at the University of Minnesota and director of the Minnesota Laboratory for Low-Vision Research, who will test the new techniques with subjects with a variety of visual impairments.

Common low-vision disorders include glaucoma, cataracts, macular degeneration, diabetic retinopathy and retinitis pigmentosa, as well as the overall loss in visual ability that comes with aging. More than 10 million people in the United States have some form of low vision.

Each type of disorder presents the sufferer with different problems. Glaucoma, for example, results in a loss of peripheral vision, while macular degeneration causes a loss of fine detail in the center of the visual field. Other disorders, such as cataracts, lead to a general loss of contrast over the entire field. Textbooks often include illustrations prepared by artists to show how the world appears to low-vision sufferers. "The trouble is, most of these illustrations are completely wrong," Ferwerda says. For example, an illustration of the effect of macular degeneration is usually a picture with a hole in the middle. In fact, Ferwerda says, while the retina might not gather information about the center of the field, the brain is very good at filling in the blanks, and a person sees a poorly detailed image, rather than one with a hole. Glaucoma patients with "tunnel vision" don't see the edges of their visual field as dark; they just have trouble orienting themselves in space.

Rather than manipulating images optically, Ferwerda will work from computer models of human visual processing. Experimental psychologists have broken down visual processing into a series of steps, beginning with the absorption of light by rod and cone photoreceptors, moving through preliminary processing in nerve tissue in the retina, proceeding to several steps in the brain. Each step can be represented mathematically and modeled in a computer program. Starting with a model of normal vision, Ferwerda can introduce changes that correspond to various defects in the system.

A reliable computer model of a visual defect, Ferwerda says, should make it possible to process images in a way that compensates for the defect. For example, one way to aid people with macular degeneration might be to shift the central portion of the visual field to an undamaged part of the retina, then modify the contrast of edges in the image to make up for the fact that the off-center parts of the retina deliver less detail. For glaucoma sufferers with restricted peripheral vision, a very simple outline of the larger visual field might be overlaid on the central image to help the person stay oriented. (This approach, called vision multiplexing, already is under development elsewhere.) Image enhancement techniques also might be used to counter the glare effects produced by cataracts or to compensate for the losses in visual sensitivity that accompany the aging process.

Eventually these ideas might be built into a lightweight pair of glasses, but current technology is not that advanced, Ferwerda says. Head-mounted devices, looking something like virtual-reality headsets, take over the whole visual field and often are rejected by people with low vision. Instead, Ferwerda's idea is to incorporate new technology into a small, hand-held device that could be held up and looked into as needed -- a sort of high-tech lorgnette. Such a device would take advantage of microdisplay technology currently in development that creates very high-resolution images on a very small screen. The same technology can be incorporated into web browsers to give low-vision users better access to graphical content on the Internet, Ferwerda added. In addition to the NSF, the project is supported by the Cornell Program of Computer Graphics, founded and directed by Donald Greenberg, the Jacob Gould Schurman Professor of Computer Graphics at Cornell. The program has been a pioneer in the development of advanced computer graphics techniques for more than 25 years, with applications in architecture, art, engineering, psycholog, and computer sqcience. It is a site of the NSF Science and Technology Center for Computer Graphics and Scientific Visualization. Related World Wide Web sites: The following sites provide additional information on this news release. Some might not be part of the Cornell University community, and Cornell has no control over their content or availability. o Cornell Program of Computer Graphics: http://www.Graphics.Cornell.EDU/

o James Ferwerda home page: http://www.graphics.cornell.edu/~jaf

o The Minnesota Laboratory for Low-Vision Research:

http://vision.psych.umn.edu/www/legge-lab/legge-lab.html

o LVRGNet, an online low-vision resource: http://www.varrd.emory.edu/LVRGNET/index.html .
-end-


Cornell University

Related Macular Degeneration Articles from Brightsurf:

Levodopa may improve vision in patients with macular degeneration
Investigators have determined that treating patients with an advanced form of age-related macular degeneration (AMD) with levodopa, a safe and readily available drug commonly used to treat Parkinson's disease, stabilized and improved their vision.

Combating drug resistance in age-related macular degeneration
An international team of researchers led by Baylor College of Medicine and Houston Methodist has discovered a strategy that can potentially address a major challenge to the current treatment for age-related macular degeneration,

Study finds unexpected suspect in age-related macular degeneration
Scientists have identified an unexpected player in the immune reaction gone awry that causes vision loss in patients with age-related macular degeneration (AMD), according to a new study published today in eLife.

Potential way to halt blinding macular degeneration identified
It would be the first treatment for dry age-related macular degeneration and could significantly improve treatment for wet AMD.

Heating techniques could improve treatment of macular degeneration
Age-related macular degeneration is the primary cause of central vision loss and results in the center of the visual field being blurred or fully blacked out.

Eye's vulnerability to macular degeneration revealed
Scientists have found significant differences in the shape and biology of the same type of cell taken from different parts of the retina, according to a study in eLife.

Hallucinations associated with brain hyperactivity in people with macular degeneration
New research from The University of Queensland has shown for the first time that visual hallucinations in people with macular degeneration are associated with abnormally heightened activity in the visual cortex of the brain.

Eating leafy greens could help prevent macular degeneration
A new study has shown that eating vegetable nitrates, found mainly in green leafy vegetables and beetroot, could help reduce your risk of developing early-stage age-related macular degeneration (AMD).

An orange a day keeps macular degeneration away: 15-year study
A new study has shown that people who regularly eat oranges are less likely to develop macular degeneration than people who do not eat oranges.

Macular degeneration linked to aging immune cells
Studying mice and cells from patients, vision researchers at Washington University School of Medicine in St.

Read More: Macular Degeneration News and Macular Degeneration Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.